№2|2026

ВОДООЧИСТКА

УДК 628.16
DOI 10.35776/VST.2026.02.01

Рафф П. А.

Обзор современных исследований и перспективных методов очистки высокоцветных природных вод

Аннотация

Использование водных ресурсов северных регионов, характеризующихся высокой цветностью и значительным содержанием природного органического вещества, представляет собой одну из наиболее сложных задач для современных систем водоподготовки. Традиционные методы очистки зачастую оказываются недостаточно эффективными для работы с такими водами, что стимулирует активный поиск и разработку новых, более совершенных технологий. За последние полтора десятилетия акцент в исследованиях сместился в сторону комбинированных, гибридных решений, которые не только обеспечивают высокую степень очистки, но и отвечают требованиям экономической целесообразности и экологической безопасности. В данном обзоре систематизированы современные исследования и методы очистки высокоцветных природных вод, изучаемые и применяемые в России и за рубежом.

Ключевые слова

, , , , , ,

Для цитирования: Рафф П. А. Обзор современных исследований и перспективных методов очистки высокоцветных природных вод // Водоснабжение и санитарная техника. 2026. № 2. С. 4–8. DOI: 10.35776/VST.2026.02.01.

Дальнейший текст доступен по платной подписке.
Авторизуйтесь: введите свой логин/пароль.
Или оформите подписку

Список цитируемой литературы

  1. Bauer J. E., Bianchi T. S. Dissolved organic carbon cycling and transformation. In: Wolanski E., McLusky D. S. (eds.). Treatise on estuarine and coastal science, 2011, v. 5, pp. 7–67.
  2. Органическое вещество и биогенные элементы во внутренних водоемах и морских водах: Материалы V Всероссийского симпозиума с международным участием. Петрозаводск, 10–14 сентября 2012 г. – Петрозаводск: Карельский научный центр РАН, 2012. 465 с.
    [Organic matter and nutrients in inland and marine water]. Proceedings of the V All-Russian Symposium with international participation. Petrozavodsk, 10–14 September 2012. Petrozavodsk, Karelian Research Center of the Russian Academy of Sciences, 2012, 465 p. (In Russian).
  3. Thurman E. M. Organic geochemistry in natural waters. Kluwer Academic Publishers Group, Dordrecht, 1985. DOI: 10.1007/978-94-009-5095-5.
  4. Aitkenhead-Peterson J. A., McDowell W. H., Neff J. C. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In: Aquatic ecosystems: inter-activity of dissolved organic matter. Academic Press, San Diego, CA, 2003, pp. 25–70.
  5. Головин В. Л., Попова Т. Ю., Безбородов С. А., Медведь П. В. Определение органических примесей природных вод при обосновании технологических средств обработки // Инновации и инвестиции. 2020. № 6. С. 208–215.
    Golovin V. L., Popova T. Iu., Bezborodov S. A., Medved’ P. V. [Determining organic impurities in natural waters while substantiating process treatment methods]. Innovatsii i Investitsii, 2020, no. 6, pp. 208–215. (In Russian).
  6. Boyer E. B., Hornberger G. M., Bencala K. E., McKnight D. M. Effects of asynchronous snowmelt on the flushing of dissolved organic carbon: a mixing model approach. Hydrological Processes, 2000, no. 14, pp. 3291–3308.
  7. Hanson P. C., Pollard A. I., Bade D. L. et al. A model of carbon evasion and sedimentation in temperate lakes. Global Change Biology, 2004, no. 10, pp. 1285–1298.
  8. Canham C. D., Pace M. L., Papaik M. J. et al. A spatially explicit analysis of watershed-scale dissolved organic carbon in Adirondack lakes. Ecological Applications, 2004, no. 14, pp. 839–854.
  9. Lumsdon D. G., Stutter M. I., Cooper R. J., Manson J. R. Model assessment of biogeochemical controls on dissolved organic carbon partitioning in an acid organic soil. Environmental Science & Technology, 2005, no. 39, pp. 8057–8063.
  10. Michalzik B., Tipping E., Mulder J. et al. Modeling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry, 2003, no. 66, pp. 241–264.
  11. Ledesma José L. J., Köhler Stephan J., Futter Martyn N. Long-term dynamics of dissolved organic carbon: Implications for drinking water supply. Science of the Total Environment, 2012, v. 432, pp. 1–11.
  12. Weishaar J. L., Aiken G. R., Bergamaschi B. A. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology, 2003, v. 37, pp. 4702–4708.
  13. Ивкин П. А., Латышев Н. С. Совершенствование технологии очистки высокоцветных и маломутных вод // Водоснабжение и санитарная техника. 2010. № 7. С. 38–47.
    Ivkin P. A., Latyshev N. S. [Improvement of the technology of high color and low turbidity water treatment]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2010, no. 7, pp. 38–47. (In Russian).
  14. Бойкова Т. Е., Богданович Н. И., Мауричева Т. С. Применение флокулянтов в процессе водоподготовки // Современные наукоемкие технологии. Региональное приложение. 2019. № 1 (57). С. 91–101.
    Boikova T. E., Bogdanovich N. I., Mauricheva T. S. [Using flocculants in water treatment processes]. Sovremennye Naukoemkie Tekhnologii. Regional’noe Prilozhenie, 2019, no. 1 (57), pp. 91–101. (In Russian).
  15. Гандурина Л. В. Оптимизация технологии коагуляционной очистки воды за счет эффективного использования коагулянтов и флокулянтов // Вода Magazine. 2013. № 1 (65).
    Gandurina L. V. [Optimization of coagulation water purification technology through the efficient use of coagulants and flocculants]. Voda Magazine, 2013, no. 1 (65). (In Russian).
  16. Журба М. Г., Говорова Ж. М., Гандурина Л. В., Говоров О. Б., Елюков М. В. Интенсификация процессов очистки маломутных цветных вод в осветлителях со взвешенным осадком. Часть 1. Часть 2 // Водоснабжение и санитарная техника. 2012. № 4. С. 28–35. № 5. С. 45–54.
    Zhurba M. G., Govorova Zh. M., Gandurina L. V., Govorov O. B., Eliukov M. V. [Intensification of low turbidity colored water treatment in a sludge blanket clarifier. Part 1. Part 2]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2012, no. 4, pp. 28–35, no. 5, pp. 45–54. (In Russian).
  17. Afolabi M., Onukogu O. A., Igunma T. O. et al. Review of coagulation-flocculation kinetics and optimization in municipal water purification units. IRE Journals, 2025, v. 3, is. 8, pp. 259–275.
  18. Amy G. Fundamental understanding of organic matter fouling of membranes. Desalination, 2008, no. 231, pp. 44–51.
  19. Buisson H., Lee N., Amy G., Croue J. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic. Water Research, 2004, v. 38, pp. 4511–4523.
  20. Fan L., Harris J. L., Roddick F. A., Booker N. I. C. A. Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Research, 2001, v. 35, pp. 4455–4463.
  21. Ladouceur J. D., Narbaitz R. M. Reduced low-pressure membrane fouling by inline coagulation pretreatment for a colored river water. Membranes, 2022, v. 12, is. 11, pp. 1028.
  22. Кузьмин В. В., Погорельцев А. Н., Маслий В. Д. Результаты полевых испытаний методов нанофильтрации при очистке озерной воды от цветности и окисляемости / Водоснабжение, водоотведение, экологическая безопасность строительства и городского хозяйства: Сборник трудов НИИ ВОДГЕО. Вып. 16. – М., 2014. С. 153.
    Kuz’min V. V., Pogorel’tsev A. N., Maslii V. D. [Results of field tests of nanofiltration methods for removing color and oxidizability from lake. Water supply, sanitation, environmental safety of construction and urban management]. Collected papers of NII VODGEO, is. 16. Moscow, 2014, p. 153. (In Russian).
  23. Edgar M., Boyer T. H. Removal of natural organic matter by ion exchange: Comparing regenerated and non-regenerated columns. Water Research, 2020, v. 189, p. 116647.
  24. Lamsal R., Walsh M. E., Gagnon G. A. Comparison of advanced oxidation processes for the removal of natural organic matter. Water Research, 2011, v. 45, pp. 3263–3269.
  25. Yu J. Sumita, Zhang K., Zhu Q. et al. A review of research progress in the preparation and application of ferrate (VI). Water, 2023, no. 15, p. 699.
  26. Dong F., Liu J., Li C. et al. Ferrate (VI) pre-treatment and subsequent chlorination of blue-green algae: Quantification of disinfection byproducts. Environment International, 2019, no. 133, pp. 105195.
  27. Gan W., Sharma V. K., Zhang X. et al. Investigation of disinfection byproducts formation in ferrate (VI) pre-oxidation of NOM and its model compounds followed by chlorination. Journal of Hazardous Materials, 2015, no. 292, pp. 197–204.
  28. Sailo L., Tiwari D., Lee S.-M. Degradation of some micro-pollutants from aqueous solutions using ferrate (VI): Physico-chemical studies. Separation Science and Technology, 2017, no. 52, is. 17, pp. 2756–2766.
  29. Dong H., Li Y., Wang S. et al. Both Fe (IV) and radicals are active oxidants in the Fe (VI)/peroxydisulfate process. Environmental Science & Technology Letters, 2020, no. 7, pp. 219–224.
  30. Li X., Liu X., Lin C. et al. Catalytic oxidation of contaminants by fe-0 activated peroxymonosulfate process: Fe (IV) involvement, degradation intermediates and toxicity evaluation. Chemical Engineering Journal, 2020, v. 382, pp. 123013.
  31. Jiang Y., Goodwill J. E., Tobiason J. E., Reckhow D. A. Comparison of ferrate and ozone preoxidation on disinfection byproduct formation from chlorination and chloramination. Water Research, 2019, no. 156, pp. 110–124.

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1