Tag:задача потокораспределения

№04|2023

ВОДОЗАБОРЫ

УДК 628.11/.12:658.26:004.02
DOI 10.35776/VST.2023.04.03

Баранчикова Н. И., Епифанов С. П., Дытте А. Г.

Гидравлический расчет групповых водозаборов из подземных скважин, оборудованных насосами с частотными преобразователями

Аннотация

Применение частотных преобразователей на групповых водозаборах из подземных источников в системах водоснабжения направлено на экономию электроэнергии, организацию эффективных режимов, повышение технологичности управления, однако без достаточного обоснования не всегда приводит к желаемому результату. Одной из причин этого является отсутствие расчета с помощью эффективной математической модели, описывающей движение воды в водоносных горизонтах, скважинах, водоподъемных трубах и сборных коллекторах с учетом всех необходимых ограничений, в том числе на параметры режима при использовании частотных преобразователей на части или на всех погружных насосах. Модель представлена в виде задачи оптимизации, в которой целевая функция является суммарной потребляемой мощностью всеми погружными насосами, участвующими в работе. Предлагаемая оптимизационная модель позволяет описывать режимы функционирования групповых водозаборов от границы контура питания водозабора до резервуаров. Все ограничения задачи оптимизации можно разделить на три непересекающиеся группы: балансовые, технологические и режимные. Вычислив расходы электроэнергии по всем значимым режимам в течение года и сравнив их с затратами при существующих режимах без использования частотных преобразователей, можно сделать обоснованный вывод о целесообразности применения частотного электропривода, в том числе на один или несколько погружных насосов. Предложенная модель позволяет осуществлять организацию не только эффективных, но и технологически допустимых режимов.

Ключевые слова

, , , , , , , ,

 

№10|2019

ПИТЬЕВОЕ ВОДОСНАБЖЕНИЕ

DOI 10.35776/MNP.2019.10.04
УДК 614.844

Епифанов С. П., Зоркальцев В. И., Баранчикова Н. И., Корельштейн Л. Б.

Гидравлический расчет установок автоматического пожаротушения, совмещенных с внутренним противопожарным водопроводом

Аннотация

В последние десятилетия резко возросло строительство крупных зданий: торгово-развлекательных центров, многофункциональных высотных зданий жилого и общественного назначения, в том числе с подземными автостоянками, складских помещений для хранения горючих материалов. При строительстве часто используют отделочные материалы, которые при возгорании выделяют отравляющие вещества. Пожары могут приводить к человеческим жертвам и значительным материальным потерям. Для пожарной безопасности зданий и сооружений наиболее эффективно использование противопожарного водоснабжения – как наружного, так и внутреннего. Из-за невозможности обеспечить наружное пожаротушение большой части помещений верхних этажей высотных зданий особое значение приобретает эффективность и надежность систем внутреннего пожаротушения. Расход воды на противопожарное водоснабжение может составлять 200 л/с и более. Для подачи воды в таком объеме к местам возгорания требуются эффективные системы внутреннего водоснабжения: автоматические системы пожаротушения (спринклерные и дренчерные), внутренний противопожарный водопровод, дренчерные водяные завесы. Совмещенные системы внутреннего пожаротушения включают автоматические установки пожаротушения и внутренний противопожарный водопровод. Методика гидравлического расчета каждой из этих систем имеется в нормативной и специальной литературе. Но при гидравлическом расчете совмещенных (объединенных) систем противопожарного водоснабжения следует учитывать их существенные особенности. В связи с этим рассматривается математическая модель потокораспределения в автоматических системах пожаротушения, совмещенных с внутренним противопожарным водопроводом. Приводится методика гид­равлического расчета произвольных совмещенных систем противопожарного водоснабжения. Предлагаемая модель позволяет получать реальную величину отбора воды через насадки (распылители) и пожарные ручные стволы.

Ключевые слова

, , , , , , ,

 

№12|2020

ЭНЕРГОСБЕРЕЖЕНИЕ

УДК 628.1/.2:621.65

Епифанов С. П., Баранчикова Н. И., Куртин А. В.

Математическое моделирование совместной работы
насосных агрегатов, в том числе с частотным регулированием

Аннотация

Применение насосных агрегатов с частотными преобразователями с целью экономии электроэнергии и организации эффективных режимов работы в системах водоснабжения и водоотведения, иногда без достаточного обоснования, не всегда приводит к желаемому результату. Одной из причин этого является отсутствие простой математической модели, описывающей потокораспределение в технологических трубопроводах насосных станций, с учетом всех ограничений на параметры режима работы при использовании частотных преобразователей на части или на всех насосных агрегатах. Сама задача потокораспределения должна представляться в виде задачи оптимизации, в которой целевая функция может быть суммарной потребляемой мощностью всеми участвующими в работе насосными агрегатами. Такая оптимизационная модель позволяет описывать режимы работы как параллельно, так и последовательно соединенных насосов. Найдя затраты электроэнергии по всем значимым режимам в течение года и сравнив их с существующими режимами без использования частотных преобразователей, можно сделать обоснованный вывод о целесообразности применения частотного электропривода, в том числе на один или несколько насосных агрегатов. Предложенная модель позволяет осуществлять организацию не только эффективных, но и технологически допустимых режимов. На основе полученных результатов расчета задачи оптимизации при нескольких режимах можно построить аппроксимирующие функции суммарной подачи насосной станции от потерь напора в дросселирующих устройствах и использовать их в случае выхода из строя расходомеров или их отсутствия.

Ключевые слова

, , , , , , , ,

 

№2|2022

ОЧИСТКА СТОЧНЫХ ВОД

DOI 10.35776/VST.2022.02.07
УДК 628.356

Сухарев М. Г., Баранчикова Н. И., Епифанов С. П., Корельштейн Л. Б.

Расчет пневматических систем аэрации в аэротенках

Аннотация

Рассматривается пневматическая система аэрации в аэротенках канализационных очистных сооружений. Основные затраты электроэнергии на очистных сооружениях приходятся на обеспечение работы системы аэрации, в связи с чем возникает задача оптимального распределения воздуха во все технологические зоны. При этом как недостаток воздуха, даже на некоторых этапах очистки, так и его избыток приводит к снижению эффективности очистки. Обеспечить управляемую подачу воздуха только с помощью измерительных приборов достаточно затратно, поэтому предлагается использовать математическую модель для аэродинамического расчета системы аэрации с нефиксированными отборами воздуха через аэраторы. На основании результатов аэродинамического расчета можно обеспечить адаптивное управление воздухораспределением в системе аэрации при изменении количества и качества поступающих стоков, напорно-расходных характеристик аэраторов, давления, температуры и влажности наружного воздуха. Приведен пример аэродинамического расчета пневматической системы аэрации.

Ключевые слова

, , , , ,

 

vstmag engfree 200x100 2

Banner Oct 2024

ЭТ 2024 200х200px V2

myproject msk ru

Баннер конференции г. Пятигорск

мнтк баннер

souz ingenerov 02

Water Week 200x200 gif ru foreign 2