№1|2024

ВОДООЧИСТКА

UDC 628.161:66.081.63
DOI 10.35776/VST.2024.01.02

Pervov A. G., Spitsov D. V., Tet Zo Aung, Medved’ko Viktoriia

Use of the reverse osmosis method for the preparation of concentrated sodium chloride solutions for the production of sodium hypochlorite

Summary

The use of membrane reverse osmosis and nanofiltration plants for the production of drinking water is described. It is noted that using hypochlorite obtained by the electrolysis of concentrated solutions of table salt is an effective method of disinfection in drinking water supply systems. A new area of application of reverse osmosis systems is considered, i. e., the preparation, in addition to clean water, of concentrated solutions of sodium chloride used for the production of sodium hypochlorite to reduce the operating costs of a drinking water treatment plant eliminating the purchase of the chemical, i. e., table salt. A process flow scheme of the proposed technology is presented, that involves cascade processing of the source water using nanofiltration membranes of low selectivity to provide for separating the concentrate into the solutions of monovalent and divalent ions. The experimental procedure is described and experimental dependencies are presented to determine the efficiency of the concentrate separation. Based on the results of the experiments, an economic calculation of the costs of designing an additional system for producing concentrated solutions was performed proving the economic efficiency of the proposed process compared to the use of table salt.

Key words

, , , , , , ,

For citation: Pervov A. G., Spitsov D. V., Tet Zo Aung, Medved’ko V. V. Use of the reverse osmosis method for the preparation of concentrated sodium chloride solutions for the production of sodium hypochlorite. Vodosnabzhenie i Sanitarnaia Tekhnika, 2024, no. 1, pp. 13–20. DOI: 10.35776/VST.2024.01.02. (In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Suratt W. B., Adrews D. R., Pujals V. J., Richards S. A. Design considerations for major membrane treatment facility for groundwater. Desalination, 2020, v. 131, is. 1–3, pр. 37–46. DOI: 10.1016/S0011-9164(00)90004-3.
  2. Spitsov D., Aung H. Z., Pervov A. The selection of efficient antiscalant for RO facility, control of its quality and evaluation of the economical efficiency of its application. Membranes, 2023, v. 13, 85. DOI: 10.3390/membranes13010085.
  3. Guo H., Yang W., Li X., Yao Z. Nanofiltration for drinking water treatment: A review. Frontiers of Chemical Science and Engineering, 2021, v. 15, pp. 681–698.
  4. Turek M., Mitko K., Dydo P., Laskovska E., Jakobic-Kolon A. Prospects for high water recovery membrane desalination. Desalination, 2017, v. 401, pp. 180–189. DOI: 10/1016/j.desal.2016.07.047.
  5. Jamaly S., Darwish N. N., Ahmed I., Hasan S. W. A short review on reverse osmosis pretreatment technologies. Desalination, 2014, v. 354, pp. 30–38. DOI: 10.1016/j.desal.2014.09.017.
  6. Abdul Wahab Mohammad, Nidal Hilal, Naif Darwish, Habis Al-Zoubi. Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. Journal of Membrane Science, 2006, 289(1):40-50, DOI: 10/1016/j.memsci.2006.11.035.
  7. Lopes C. N., Petrus J. C. C., Riella H. G. Color and COD retention by nanofiltration membranes. Desalination, 2005, v. 172, pp. 77–83.
  8. Al-Qadami E. H. H., Ahsan A., Mustafa Z., Abdurrasheed A. S., Yusof K. W., Shah S. M. H. Nanofiltration membrane technology and its applications in surface water treatment: A review. Journal of Desalination and Water Purification, 2020, 18:3-9.
  9. Wenhua Xu, Dongfu Liu, Lihua He and Zhongwei Zhao. A comprehensive membrane process for preparing lithium carbonate from high Mg/Li brine. Membranes, 2020, 10(12):371. DOI: 10.3390/membranes10120371.
  10. Xianhui Li, Yinghui Mo, Weihua Qing, Senlin Shao, Chuyang Y. Tang, Jianxin Li. Membrane-based technologies for lithium recovery from water lithuim resources: A review. Journal of Membrane Science, 2019, v. 591, 117317. DOI: 10.1016/j.memsci.2019.117317.
  11. Goh P. S., Lau W. J., Othman M. H. D., Ismail A. F. Membrane fouling in desalination and its mitigation strategies. Desalination, 2018, v. 425, pp. 130–155. DOI: 10.1016/j.desal.2017.10.018.
  12. Hao Guo, Xianhui Li, Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao, Chuyang Y. Tang. Nanofiltration for drinking water treatment: A review. Frontiers of Chemical Science and Engineering, 2021, v. 16, pp. 681–698.
  13. Jiayu Tian, Xingrui Zhao, Shanshan Gao, Xiaoying Wanng and Ruijun Zhang. Progress in research and application of nanofiltration (NF) technology for brackish water treatment. Membranes, 2021, 11(9):662. DOI: 10.3390/membranes11090662.
  14. Jiang S., Li Y., Ladewig B. P. A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, 2017, v. 595, pp. 567–583. DOI: 10.1016/j.scitotenv.2017.03.235.
  15. Li S., Wang X., Guo Y., Hu J., Lin S., Tu Y., Chen L., Ni Y., Huang L. Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: A review. Journal of Cleaner Prodaction, 2022, 333, 130171.
  16. Watson B. M., Hornburg C. Low-energy membrane nanofiltration for removal of color, organics and hardness from drinking water supplies. Desalination, 1989, v. 72, рр. 11–22.
  17. Первов А. Г. Технологии очистки природных вод: учебное издание. – М: Издательство АСВ, 2016. 600 с.
    Pervov A. G. Tekhnologii ochistki prirodnykh vod [Natural water treatment technologies. Educational edition. Moscow, ASV Publ., 2016, 600 p.].
  18. Пат. 2176982, РФ. МПК C01B 11/06, C25B 9/00. Установка для получения гипохлорита натрия / Фесенко Л. Н., Бабаев А. А. // Изобретения. Полезные модели. 2001.
    Fesenko L. N., Babaev A. A. [Pat. 2176982, RF. MPC C01B 11/06, C25B 9/00. Installation for the preparation of sodium hypochlorite]. Izobreteniia. Poleznye Modeli, 2001. (In Russian).
  19. Фесенко Л. Н., Денисова А. В., Паненко Н. Н., Денисов В. В. Перевод водоочистных станций на низкоконцентрированный гипохлорит натрия: сочетание экологических и экономических интересов // Известия вузов. Северо-Кавказский Регион. Технические науки. 2012. № 4. С. 85–88.
    Fesenko L. N., Denisova A. V., Panenko N. N., Denisov V. V. [Conversion of water treatment plants to low-concentration sodium hypochlorite: a combination of environmental and economic interests]. Izvestiia Vuzov, North Caucasus Region, Technical Sciences, 2012, no. 4, pp. 85–88. (In Russian).
  20. Пчельников И. В. Исследование и разработка технологии получения электролитического гипохлорита нат­рия электролизом морской воды // Водоснабжение и санитарная техника. 2020. № 9. С. 51–57.
    Pchel’nikov I. V. [Research and development of the technology for the production of electrolytic sodium hypochlorite by electrolysis of seawater]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2020, no. 9, pp. 51–57. (In Russian).
  21. Первов А. Г., Андрианов А. П., Ефремов Р. В., Головесов В. А. Новая технология сокращения расхода концентрата установок обратного осмоса // Мембраны и мемб­ранные технологии. 2021. Т. 11. № 3. С. 202–210. DOI: 10.1134/S221811722103007X.
    Pervov A. G., Andrianov A. P., Efremov R. V., Golovesov V. A. [New technology for reducing the consumption of reverse osmosis concentrate]. Membrany i Membrannye Tekhnologii, 2021, v. 11, no. 3, pp. 202–210. DOI: 10.1134/S221811722103007X. (In Russian).
  22. Pervov A. G. Removal of calcium carbonate from reverse osmosis plant concentrates containing inhibitory substances. Membranes and Membrane Technologies, 2017, v. 3, pp. ­192–205.
  23. Головесов А. В., Рудакова Г. Я., Первов А. Г., Спицов Д. В. Выбор мембран и сервисных реагентов для мембранных установок, применяемых для обработки подземных вод // Вестник МГСУ. 2020. Т. 15. Вып. 11. С. 1556–1569. DOI: 10.22227/1997-0935.2020.11.1556-1569.
    Golovesov A. V., Rudakova G. Ia., Pervov A. G., Spitsov D. V. [Choosing membranes and service chemicals for membrane installations used for groundwater treatment]. Vestnik MGSU, 2020, v. 15, is. 11, pp. 1556–1569. DOI: 10.22227/1997-0935.2020.11.1556-1569. (In Russian).
  24. Первов А. Г., Рудакова Г. Я., Ефремов Р. В. Разработка программ для технологического расчета систем обратного осмоса и нанофильтрации с использованием реагентов «Аминат» // Водоснабжение и санитарная техника. 2009. № 7. С. 21–28.
    Pervov A. G., Rudakova G. Ia., Efremov R. V. [Designing programs for the technological calculation of reverse osmosis and nanofiltration systems using Aminat chemicals]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2009, no. 7, pp. ­21–28. (In Russian).
  25. Pervov A. G., Shirkova T. N., Tikhonov V. A. Design of reverse osmosis and nanofiltration membrane facilities to treat landfill leachates and increase recoveries. Membranes and Membrane Technologies, 2020, v. 2, pp. 296–309.
  26. Voutckov N. Overview of seawater concentrate disposal alternatives. Desalination, 2011, v. 273, pp. 205–219.
  27. Alghamdi A. Recycling of reverse osmosis (RO) reject streams in brackish water desalination plants using fixed bed column softener. Energy Procedia, 2017, v. 107, pp. 205–211.

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

souz ingenerov 02

Aquatherm 200x200 gif ru foreign