bbk 000000

UDC 628.161.2:614.777:546.47/.49

Larionov S. Iu., Panteleev Aleksei, Riabchikov Boris, Shilov Mikhail, Kasatochkin A. S.

Removal of natural radionuclides from underground water sources


Natural radionuclides are present in underground water sources of some Russian regions in the concentrations exceeding the maximum permissible level for drinking water. Natural water radioactivity is caused by the presence of uranium 238U and thorium 232Th isotope decay products including radium and radon. For the purification of radium containing water lime softening, sorption on special adsorbents (e. g. zeolites), ion exchange softening and active aluminium oxide or active alumina, manganese containing media are used. The given methods of treatment are described in a number of publications that state the possible use of reverse osmosis or nanofiltration, however, lack the information on their application. Membrane technologies in combination with the traditional methods allow designing the flow scheme of radionuclides removal from underground water. During the tests on producing water of the required quality for an open-cycle heat supply system no radionuclides accumulation was observed. For the operation period (1.5 month) of the ultrafiltration plant during the interval between backwash cycles the radiation background straight at the membrane increased insignificantly; whereas, after the backwash it returned to the initial level. Backwash number was more than 100 providing for the statistically valid data. The reverse osmosis plant was operating with ultrafiltration permeate. The total radionuclides in the parent solution was about 1.4 Bq/l, in reverse osmosis filtrate – 0.005 Bq/l, i. e. much lower than the maximum permissible level. In reverse osmosis concentrate this value does not exceed 1 Bq; therefore, it can be discharged into the open hydraulic networks in compliance with the established standards. No activity accumulation on the reverse osmosis membranes was observed.

Key words

, , , , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe


  1. Bekman I. N. Radii [Radii: Teaching guide. Moscow, Moscow State University named after M. V. Lomonosov Publ., 2010, 142 p.].
  2. Safronov V. G., Zhevlakov A. V. [Radium as a source of radioactive contamination]. Bezopasnost’ Okruzhaiushchei Sredy, 2006, no. 1, pp. 56–60. (In Russian).
  3. Klochkova N. V. Kompleksnaia radiatsionno-gigienicheskaia otsenka kachestva podzemnykh vod Moskovskogo regiona [Comprehensive radiation and sanitary assessment of the Moscow Region underground water quality: PhD thesis in Biology. Moscow, 2011, 214 p.].
  4. Lysenko N. P., Gulynin A. V., Gudymenko V. A., Irkhin S. Iu. Rezul’taty issledovanii soderzhaniia prirodnykh al’fa-izluchaiushchikh radionuklidov (U, Ra) v podzemnykh vodakh Chekhovskogo raiona Moskovskoi oblasti [The results of studying the concentration of natural alpha-emitting radionuclides (U, Ra) in underground waters of the Chekhov district of the Moscow Region]. http://www.sovtehnostroy.ru/viewart.php?arts_id_=130 (accessed January 27, 2015). (In Russian).
  5. Riabchikov B. E. Ochistka zhidkikh radioaktivnykh otkhodov [Radioactive wastes treatment. Moscow, DeLi print Publ., 2008, 515 p.].
  6. Lumistea L., Muntera R., Suttb J., Kivimeb T. Removal of radionuclides from Estonian groundwater using aeration, oxidation, and filtration. Proceedings of the Estonian Academy of Sciences, 2012, v. 61, no. 1, pp. 58–64.
  7. EPA 816-R-05-004. A regulators guide to the management of radioactive residuals from drinking water treatment technologies. 2005, July, 81 p.
  8. Vesterbacka P. 238U-series radionuclides in Finnish groundwater-based drinking water and effective doses. Doctoral thesis. STUK-A213. Helsinki, 2005, 94 р.
  9. Osadchaia E. N. [Characterization of methods of removing radioisotopes of low-activity waters]. Visnyk SumDU, 2003, no. 3 (49), pp. 103–106. (In Russian).
  10. Esmeray E., Aydin M. E. Comparison of natural radioactivity removal methods for drinking water supplies: A review. Journal of International Environmental Application & Science, 2008, v. 3 (3), pp. 142–146.
  11. Chaupnik S., Franus W., Wysocka M., Gzyl G. Environ application of zeolites for radium removal from mine water. Environmental Science Pollution Research, 2013, v. 20, pp. 7900–7906.
  12. Vaaramaa K. Removal of natural radionuclides from drinking water by ion exchange. 6 Joint Finnish-Russian Symposium on Radiochemistry, Helsinki, November 7–8, 2000, p. 18.
  13. Munter R. Technology for the removal of radionuclides from natural water and waste management: state of the art. Proceedings of the Estonian Academy of Sciences, 2013, v. 62, no. 2, pp. 122–132.
  14. Riabchikov B. E. Sovremennaia vodopodgotovka [Advanced water treatment. Moscow, DeLi plius Publ., 2013, 680 p.].
  15. Panteleev A. A., Riabchikov B. E., Khoruzhii O. V., Gromov S. L., Sidorov A. R. Membrannye tekhnologii v promyshlennoi vodopodgotovke [Membrane technologies in commercial water treatment. Moscow, DeLi plius Publ., 2012, 429 p.].
  16. Svittsov A. A. Vvedenie v membrannuiu tekhnologiiu [Introduction into membrane technology. Moscow, DeLi print Publ., 2007, 208 p.].
  17. Desiatov A. V., Baranov A. E., Baranov E. A., Kakurkin N. P., Kazantseva N. N., Aseev A. V. Opyt ispol’zovaniia membrannykh tekhnologii dlia ochistki i opresneniia vody [The experience of using membrane technologies for water treatment and desalination. Moscow, Khimiia Publ., 2008. 240 p.].
  18. Pervov A. G. Sovremennye vysokoeffektivnye tekhnologii ochistki pit’evoi i tekhnicheskoi vody s primeneniem membran: obratnyi osmos, nanofil’tratsiia, ul’trafil’tratsiia [Advanced high efficient technologies of drinking and process water treatment with the use of membranes: reverse osmosis, nanofiltration, ultrafiltration. Moscow, ASV Publ., 2009, 231 p.].

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

souz ingenerov 02

Aquatherm 200x200 gif ru foreign

ata 200x100ru