№2|2026
WATER TREATMENT
UDC 628.179.2
DOI 10.35776/VST.2026.02.03
Study of the eco-economic efficiency of electrochemical pH correction for reducing hardness salts
Summary
In industry, water recycling systems or units have been widely used to cool equipment and other industrial processes. One of the main problems associated with operating these systems is scale formation owing to the presence of hardness salts, such as calcium and magnesium compounds. Traditional addressing water hardness problems involves the use of chemicals such as phosphates and polyphosphates to bind calcium and magnesium ions, preventing their precipitation. Electrochemical pH correction provides for a more environmentally friendly solution. Changing water pH by electrolysis enhances the precipitation of hardness salts as insoluble compounds, that can be further removed from the system. The theoretical foundations and mechanism of water softening by electrochemical treatment are examined. It is noted, however, that direct reduction of hardness salts using electrochemical pH correction alone is not possible. It is expected that electrochemical methods can significantly enhance water softening processes and improve the efficiency. The eco-economic efficiency of the electrochemical pH correction method for the side stream filtration system of an industrial water recycling unit is estimated.
Key words
softening , electrolyzer , electrochemical treatment , water hardness , water recycling facilities , eco-economic efficiency
For citation: Vurdova N. G., Ovchinnikova T. I., Mart’ianov G. M., Vurdov P. Iu. Study of the eco-economic efficiency of electrochemical pH correction for reducing hardness salts. Vodosnabzhenie i Sanitarnaia Tekhnika, 2026, no. 2, pp. 16–25. DOI: 10.35776/VST.2026.02.03. (In Russian).
The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe
REFERENCES
- Водоподготовка: справочник / Под редакцией С. Е. Беликова. – М.: Аква-Терм, 2007. 240 с.
Vodopodgotovka [Water treatment: a reference book. Edited by E. S. Belikov. Moscow, Akva-Term Publ., 2007, 240 p.]. - Копылов A. C., Лавыгин В. М., Очков В. Ф. Водоподготовка в энергетике. – М.: МЭИ, 2003. 310 с.
Kopylov A. S., Lavygin V. M., Ochkov V. F. Vodopodgotovka v energetike [Water treatment in energetics. Moscow, MEI Publ., 2003, 310 p.]. - Журба М. Г., Соколов Л. И., Говорова Ж. М. Водоснабжение. Проектирование систем и сооружений. В 3-х томах. – М.: Издательство АСВ, 2004. 496 с.
Zhurba M. G., Sokolov L. I., Govorova Zh. M. Vodosnabzhenie. Proektirovanie sistem i sooruzhenii [Water supply. Designing systems and facilities. In 3 volumes., Moscow, ASV Publ., 2004, 496 p.]. - Королев В. И., Зверева Э. Р. Российский опыт применения отходов химводоподготовки в хозяйственной деятельности: перспективы использования при обработке осадков сточных вод (обзорная статья) // Известия высших учебных заведений. Проблемы энергетики. 2022. Т. 24. № 6. С. 47–62. DOI: 10.30724/1998-9903-2022-24- 6-47-62.
Korolev V. I., Zvereva E. R. [Russian experience in using chemical water treatment waste in economic activities: prospects for using in wastewater sludge treatment (review article)]. Izvestiia Vysshikh Uchebnykh Zavedenii. Energentics Issues, 2022, v. 24, no. 6, pp. 47–62. DOI: 10.30724/1998-9903-2022-24-6-47-62. (In Russian). - Романовский В. И. Обращение с отходами водоподготовки в Республике Беларусь / Наука и технологии ЖКХ: научно-информационный бюллетень. – Минск: БГТУ, 2019. № 1. С. 111–123.
Romanovskii V. I. [Handling water treatment wastes in the Republic of Belarus]. Nauka i Tekhnologii ZhKKh: Nauchno-Informatsionnyi Biulleten’, Minsk, BGTU, 2019, no. 1, pp. 111–123. (In Russian). - Кострикин Ю. М., Мещерский Н. А., Коровина О. В. Водоподготовка и водный режим энергообъектов низкого и среднего давления: справочник. – М.: Энергоатомиздат, 1990. 254 с.
Kostrikin Iu. M., Meshcherskii N. A., Korovina O. V. Vodopodgotovka i vodnyi rezhim energoob”ektov nizkogo i srednego davleniia: spravochnik [Water treatment and water regime of power facilities of low and medium pressure: a reference book. Moscow, Energoatomizdat Publ., 1990, 254 p.]. - Cabiguen M. L. et al. Reduction of water hardness from groundwater in Puerto Princesa City, Palawan, Philippines using electrocoagulation. IOP Conference Series: Earth Environmental Science. 191 (2018) 012029. DOI: 10.1088/1755-1315/191/1/012029.
- Yasri N. G., Ingelsson M., Nightingale M., Jaggi A. et al. Investigation of electrode passivation during electrocoagulation treatment with aluminum electrodes for high silica content produced water. Water Science Technology, 2022, v. 85, is. 3, pp. 925–942. DOI: 10.2166/wst.2022.012.
- Sefatjoo P., Moghaddam M. R. Al., Mehrabadi A. R. Evaluating electrocoagulation pretreatment prior to reverse osmosis system for simultaneous scaling and colloidal fouling mitigation: Application of RSM in performance and cost optimization. Journal of Water Process Engineering, 2020, v. 35, pp. 101201. DOI: 10.1016/j.jwpe.2020.101201.
- Мартынова Н. В. Электрохимический метод умягчения воды и его применение в энергетике // Агроинженерия. 2015. № 6 (70). C. 45–49.
Martynova N. V. [Electrochemical method of water softening and its application in energetics]. Agroinzheneriia, 2015, no. 6 (70), pp. 45–49. (In Russian). - Balasubramaniam В., Saraf M., Gupta Sh. et al. Industrially viable electrochemical techniques for water treatment / Green functionalized nanomaterials for environmental applications. Elsevier, 2022, pp. 283–301. DOI: 10.1016/B978-0-12-823137-1.00011-7.
- Prasannakumari A. S. N., Madhu G. D. P., Bhuvanendran R. K. et al. Development of a continuous electrochemical reactor incorporated with waste-derived activated carbon electrode for the effective removal of hexavalent chromium from industrial effluent. Environmental Science and Pollution Research, 2024, res. 31, pp. 50297–50315. DOI: 10.1007/s11356-024-34512-2.
- Yupo J. Lin. Applications of novel electrochemical technologies for sustainable fuel. Chemical production and resources recovery. ECS Meeting Abstracts, 2022, v. MA2022-02, is. 27, pp. 1043. DOI: 10.1149/ma2022-02271043mtgabs.
- Youzheng Chai, Pufeng Qin, Zhibin Wu et al. A coupled system of flow-through electro-Fenton and electrosorption processes for the efficient treatment of high-salinity organic wastewater. Separation and Purification Technology, 2021, v. 267, pp. 118683. DOI: 10.1016/j.seppur.2021.118683.
- Liu F., Zhou R., Zhang Ch. et al. Critical review on the pulsed electrochemical technologies for wastewater treatment: Fundamentals, current trends, and future studies. Chemical Engineering Journal, 2024, v. 479, pp. 147588. DOI: 10.1016/j.cej.2023.147588.
- Дамаскин Б. Б., Петрий О. А., Цирлина Г. А. Электрохимия. – М.: Химия, КолосС, 2006. 672 с.
Damaskin B. B., Petrii O. A., Tsyrlina G. A. Elektrokhimiia [Electrochemistry. Moscow, Khimiia, KolosS Publ., 2006, 672 p.]. - Вурдова Н. Г., Фесенко Л. Н. Повышение эффективности систем оборота воды нефтеперерабатывающих и нефтехимических предприятий (часть 2) // Водоснабжение и санитарная техника. 2023. № 10. С. 37–47. DOI: 10.35776/VST.2023.10.05.
Vurdova N. G., Fesenko L. N. [Improving the efficiency of water recycling systems at oil refineries and petrochemical enterprises (part 2)]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2023, no. 10, pp. 37–47. DOI: 10.35776/VST.2023.10.05. (In Russian).




