bbk 000000

UDC 628.17.001.4

Kofman V. Ya.

Chemical information study of wastewater


The research discipline «Chemical information study of wastewater» has originated and made rapid strides since the beginning of 2000-ies in response to the demand of developing the channels of acquiring the information on the use of broad spectrum of banned narcotics and pharmaceuticals, on the effect of toxic substances, on some health indicators of the population and its size inside the territory under the study. Compared to the traditional methods of questioning and social-epidemiologic studies that imply the compilation of statistics, study of medical reports, acquisition of the information on the production and sale of the relevant medications the considered approach has certain advantages and provides for establishing continuous monitoring almost on a real-time basis. The method includes measuring the concentrations of active substances and/or metabolites of the medications studied that enter the sewer as a result of the excretion from the human organism and using the method of this data processing to determine the level of consumption of medications or narcotics by the population living on the territory served by the sewer network. Similarly the level of the population exposure to the impact of pollutants can be determined. The data obtained in some countries with the use of the considered approach corresponds to the results of the traditional studies, and, in some cases is a successful supplement. It is supposed that the significance and efficiency of the method will grow as well as under the conditions of the sewer network upgrade.

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe


  1. Zucatto E., Chiabrando C., Castigliony, et al. Estimating community drug abuse by wastewater analysis. Environmental Health Perspective, 2008, v. 116, no. 8, pp. 1027–1032.
  2. Ort C., Lawrence M. G., Reungoat J., et al. Sampling for PPCPs in wastewater systems: comparison of different sampling modes and optimization strategies. Environmental Science and Technology, 2010, v. 44, no. 16, рр. 6289–6296.
  3. Daughton C. G. Real-time estimation of small-area populations with human biomarkers in sewage. Science of the Total Environment, 2012, v. 414, pp. 6–21.
  4. Baker D. R., Kasprzyk-Hordern B. Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analyses of pharmaceuticals and illicit drugs in surface water and wastewater by solid phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A, 2011, v. 44, pp. 8036–8059.
  5. Gao J., O’Brien J. W., Lai F. Y., et al. Could wastewater analysis be a useful tool for China? Journal of Environmental Sciences, 2015, v. 27, pp. 70–79.
  6. Van Nuijs A. L. N., Mougel J.-F. Tarcomnicu I., et al. Sewage epidemiology – a real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium. Environmental International, 2011, v. 37, no. 3, pp. 612–621.
  7. O’Brien J. W., Thai P. K., Eaglesham G., et al. A model to estimate the population contributing to the wastewater using samples collected on census day. Environmental Science and Technology, 2014, v. 48, pp. 517–525.
  8. O’Brien J. W., Banks A. P. W., Novic A. J., et al. Impact of in-sewer degradation of pharmaceuticals and personal care pro­ducts (PPCPs) population markers on a populational model. Environmental Science and Technology, 2017, v. 51, pp. 3816–3823.
  9. Chen C., Kostakis G., Gerber J. P., et al. Towards finding a population biomarker for wastewater epidemiology study. Science of the Total Environment, 2014, v. 481, pp. 621–628.
  10. Castiglioni S., Bijlsma L., Covaci A., et al. Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers. Environmental Science and Technology, 2013, v. 47, no. 3, pp. 1452–1460.
  11. Alexander L. N., van Nuijs A. L. N., Castiglioni S., et al. Illicit drug consumption estimations derived from wastewater analysis: A critical review. Science of the Total Environment, 2011, v. 409, pp. 3564–3577.
  12. Thomas K. V., Bijlsma L., Castiglioni S., et al. Comparison illicit drug use in 19 European cities through sewage analysis. Science of the Total Environment, 2012, v. 432, pp. 432–439. Gatidou G., Kinyua J., van Nuijs A. L. N., et al.
  13. Drugs of abuse and alcohol consumption among different groups of population on the Greek island of Lesvos through sewage-based epidemiology. Science of the Total Environment, 2016, v. 563–564, pp. 633–640.
  14. Daughton C. G. Using biomarkers in sewage to monitor community-wide human health: isoprostanes as conceptual prototype. Science of the Total Environment, 2012, v. 424, pp. 16–38.
  15. Gonzalez-Marino I., Rodil R., Barrio I., et al. Wastewater-based epidemiology as a new tool for estimating population exposure to phthalate plasticizers. Environmental Science and Technology, 2017, v. 51, no. 7, pp. 3902–3910.
  16. Liu W.-R., Yang Y.-Y., Liu Y.-S., et al. Biocides in wastewater treatment plants: Mass balance analysis and pollution load estimation. Journal of Hazardous Materials, 2017, v. 329, pp. 310–320.
  17. Massoud M. A., Chami G., Al-Hindi M., et al. Assessment household disposal of pharmaceuticals in Lebanon: Management options to protect water quality and public health. Environmental Management, 2016, v. 57, pp. 1125–11374.
  18. Bu Q., Wang Wang B., Huang J., et al. Estimating the use of antibiotics for human across China. Chemosphere, 2016, v. 144, pp. 1384–1390.
  19. Bu Q., Shi X., Yu G., et al. Pay attention to non-wastewater emission pathways of pharmaceuticals into environments. Chemosphere, 2016, v. 16, pp. 515–518.
  20. Bound J. P., Voulvoulis N. Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environmental Health Perspective, 2005, v. 113, pp. 1705–1711.
  21. Massoud M. A., Chami G., Al-Hindi M., et al. Assessment of household disposal of pharmaceuticals in Lebanon: Ma­nagement options to protect water quality and public health. Environmental Management, 2016, v. 57, pp. 1125–1137.
  22. Peng X., Qu W., Wang C., et al. Occurence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Science of the Total Environment, 2014, v. 490, pp. 889–892.
  23. Postigo C., de Alda M. L., Barcelo D. Evaluation of drugs of abuse use and trends in a prison through wastewater analysis. Environmental International, 2011, v. 37, pp. 49–55.
  24. Zeeman G., Kujawa K., de Mes T., et al. Anaerobic treatment as a core technology for energy, nutrients and water reco­very from source-separated domestic waste(water). Water Science and Technology, 2008, v. 57, p. 1207–1212.

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

souz ingenerov 02

Aquatherm 200x200 gif ru foreign

ata 200x100ru