Tag:reverse osmosis

№2|2022

WATER TREATMENT

DOI 10.35776/VST.2022.02.03
UDC 628.165:66.081.6

Mazhuga Aleksandr, Kagramanov Georgii, Parusov Denis, Бланко-Педрехон А. М.

Aspects of the desalination of mineralized water in arid
and water-deficient territories

Summary

Supplying drinking water in coastal arid and water-deficient regions has been an urgent problem due to the population growth and progressive pollution of natural waters. To desalinate seawater, evaporation (distillation) or a membrane separation process – reverse osmosis – is usually used. The justification for choosing a seawater desalination method and the productivity of desalination plants is based on the solution of a number of closely related engineering, economic and environmental tasks. Water desalination involves relatively high energy costs; therefore, reducing the costs can be provided by increasing the fuel heat-availability factor, that is, by using cogeneration (cogeneration of heat and electricity). This determines the comprehensive technology of desalination using membrane methods of demineralization followed by the evaporation of the reject water. Herewith, the balance of the reverse osmosis and evaporator plant performance is determined by the ratio of the generated thermal and electrical energy.

Key words

, , , , ,

 

№1|2020

DRINKING WATER SUPPLY

DOI 10.35776/MNP.2020.01.01

UDC 628.16:62-278

Pervov A. G., Golovesov V. A., Spitsov D. V., Rudakova G. Ya.

Ways of reducing the operating costs of membrane units
for the preparation of drinking water from underground water sources

Summary

Experimental investigations have been conducted to determine the main process parameters of membrane units (filtrate yield, the rate of scaling on membrane surface). Basing on the results of the experimental studies the total costs of purification of underground water of various chemical composition were obtained. The studies were conducted on laboratory benches with the use of nanofiltration membranes with various selectivity rates. The consumption of service chemicals and operational costs for the equipment were calculated by the software designed earlier by the authors for determining the process parameters of membrane units. While designing membrane units, nanofiltration membranes with low values of selectivity, power consumption and expenditures for chemicals are preferred. The dependencies of the calcium carbonate scaling rates on membrane types and the multiplicity of volumetric concentration of source water were obtained. A comparison of costs shows that the use of membranes even for cases of water deferrization is more economical than the known traditional technologies.

Key words

, , , , , , , , ,

Скачать/download (PDF) free access

 

№6|2010

ENVIRONMENTAL PROTECTION

bbk 000000

UDC 628.16:62-278

Pervov A. G., Andrianov A. P., Gorbunova T. P.


Development of Membrane Techniques with Reduced Water Consumption for Own Needs

Summary

Issues of the improvement of membrane techniques used in water treatment for the reduction of consumption of a concentrate at reverse osmosis plants and wash water at ultrafiltration units are considered. A change in the design of the membrane canal makes it possible to eliminate the causes of formation of sediment’s crystals. New techniques of water treatment with utilization of the concentrate and reduction of water consumption for own needs are proposed.

Key words:

, , , , ,

 

№11|2011

МГСУ - 90 лет

bbk 000000

UDC 628.35:62-278

Pervov A. G.

Solving the problem of waste discharge of stand-alone industrial facilities

Summary

Advanced technologies of wastewater non-biological treatment with reverse osmosis are presented. Formation of concentrate in the process of reverse osmosis is a most difficult problem. The suggested technology provides for the reduction of concentrate flow to less than 1% of the total waste flow subjected to treatment (corresponding to the activated sludge flow removed to sludge beds at biological treatment facilities). Since the concentrate flow depends on the salt concentration in wastewater to be treated it is recommended to supply water with low salt concentration to the water supply system of the facilities. The comprehensive approach to the problem of reducing the discharge of industrial wastes in the environment specifies the use of membrane units for water conditioning (in boiler-houses), drinking water treatment, wastewater treatment and reuse as process water (in irrigation, in heating systems).

Key words

, , , , ,

 

№3|2022

DRINKING WATER SUPPLY

DOI 10.35776/VST.2022.03.02
UDC 628.164

Kasatochkin A. S., Larionov S. Iu., Panteleev Aleksei, Riabchikov Boris, Shapovalov Dmitrii, Kharitonov Nikolai, Shilov Mikhail

Comparison of the options of systems for adjusting the salt composition of water from underground sources

Summary

Underground water sources with a high content of hardness salts are often used for drinking water supply. To achieve drinking water quality reducing its hardness is required. Known methods of softening result in the formation of a significant amount of liquid and solid wastes, i. e. mineralized wastewater or sludge that cannot be disposed of. Chemical water softening in clarifiers is used quite rarely owing to the difficulty of preparing chemicals, maintaining the constant required water temperature, and the complexity and maintenance of the equipment. In the 1990s, the technology of chemical softening in intensified reactors (vortex and blanket) was developed that gained widespread use in drinking water supply. Such units are quite frequently used in Europe and USA. At present Mediana-Filter Research and Production Company JSC is taking on the task of designing and testing reactors of this type. They have a high specific output of 50–100 m3/(m2·h), and their maintenance is much easier compared to clarifiers. The capacity of such plants reaches thousands of cubic meters per hour. Their main advantage is the elimination of liquid discharges and generation of solid wastes that can subject to utilization, while the yield of clean water is about 100%.

Key words

, , , , , , , , , , ,

 

№12|2023

WATER TREATMENT

UDC 628.161:66.081.63
DOI 10.35776/VST.2023.12.03

Tsabilev O. V., Uglov Sergei, Vasil’chenko Vladimir, Kopytin Iurii

Pilot tests of VSEP technology to minimize the amount
of reverse osmosis concentrate

Summary

The results of pilot tests of the VSEP vibromembrane liquid separation technology for concentrating wastewater with high salinity from an industrial reverse osmosis plant are presented. VSEP technology provides for achieving high filtrate yields from salty wastewater eliminating pre-treatment and the use of antiscalants. As a result of membrane separation, demineralized water (filtrate) is obtained, that can be reused in the production cycle, as well as a highly concentrated solution of salts (concentrate), that also includes insoluble sludge. The tests were carried out at an industrial facility using a pilot plant of the VSEP Auto-LP series using reverse osmosis membranes. Procedures for choosing the brand of a polymer membrane and determining the optimal operating pressure were carried out. The experimental data on wastewater concentration cycles are presented to determine the conditions for the stability of the separation process and the duration of the installation flushing interval. The test results provide for designing an industrial wastewater return system for reuse.

Key words

, , , , ,

 

№8|2012

POTABLE WATER SUPPLY

bbk 000000

UDC 628.165:62-278

Pervov A. G., Andrianov A. P., Gorbunova T. P., Yurchevsky E. B.

The technology of reverse osmosis concentrate disposal in water treatment systems

Summary

The use of membrane reverse osmosis units in drinking water treatment is complicated by the presence of the concentrate waste streams that are to be disposed. The technology of removing (crystallization) calcium carbonate contained in the concentrate on crystal seeds is suggested and experimentally tested. From natural water the reverse osmosis units can produce deep-desalinated (softened) water and water with lowered concentration of calcium and bicarbonate ions with total dissolved solids concentration similar to that in raw water. The developed technology can be efficiently used in drinking water treatment as well as in integrated boiler and heating network makeup water preparation.

Key words

, , , , , ,

 
<< Start < Prev 1 2 Next >> End >
Page 2 of 2

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

souz ingenerov 02

Aquatherm 200x200 gif ru foreign