№5|2019

ПИТЬЕВОЕ ВОДОСНАБЖЕНИЕ

bbk 000000

УДК 628.35:661.5:547.789.724

Кофман В. Я.

Современные способы удаления азота из сточных вод
(обзор)

Аннотация

Во многих странах в условиях дефицита природных минеральных и энергетических ресурсов направленность исследований и промышленная практика ориентированы на использование сточных вод для хозяйственно-бытовых и производственных нужд, биогенов (азота и фосфора) для сельского хозяйства, а также энергетического сырья, обеспечивающего и превосходящего по уровню энергогенерации потребность очистных сооружений в электроэнергии. Рассмотрены разработанные в последние десятилетия энергоэффективные подходы биологического удаления азота из сточных вод: частичная нитрификация-Анаммокс для обработки возвратных потоков анаэробного сбраживания осадков и основного потока сточных вод; DEAMOX для совместной обработки городских стоков и сточных вод с высоким содержанием нитратов; CANDO для прямого извлечения энергии на основе азотсодержащих компонентов сточных вод; ANITA SHUNT для обработки сточных вод с низким соотношением ХПК/N; ANITA MOX, осуществляемый в MBBR-реакторе, конструкция которого обеспечивает одновременное протекание частичной нитрификации и процесса Анаммокс. Для эффективного продвижения данных технологических процессов интенсивные исследования ведутся в области изучения микробной экологии и механизма метаболических процессов, повышения стабильности процессов и эффективности извлечения энергии, разработки комбинированных схем извлечения энергии и биогенов, а также моделирования биохимических процессов.

Ключевые слова

, , , , , , , ,

Дальнейший текст доступен по платной подписке.
Авторизуйтесь: введите свой логин/пароль.
Или оформите подписку

Список цитируемой литературы

  1. Gao H., Scherson Y. D., Wells G. F. Towards energy neutral wastewater treatment: methodology and state of the art. Environmental Science. Processes & Impacts, 2014, v. 16, no. 6, pp. 1223–1246.
  2. Guest S. J., Skerlos J. L., Barnard M. B., et al. A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environmental Science and Technology, 2009, v. 43, pp. 6126–6130.
  3. Mulder A., van de Graaf A. A., Robertson L. A., Kuenen J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995, v. 16 (3), pp. 177–184.
  4. Vlaeminck S. E., De Clippeleir H., Verstraete W. Microbial resource management of one-stage partial nitritation/anammox. Microbial Biotechnology, 2012, v. 5, pp. 433–448.
  5. Siegrist H., Salzgeber D., Eugster J., Joss A. Anammox brings WWTP closer to energy aytarky due to increased biogas production and reduced aeration energy for N removal. Water Science and Technology, 2008, v. 57, pp. 383–388.
  6. Gali A., Dosta J., van Loosdrecht M. C. M., Mata-Alvarez J. Two ways to achieve an Anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process, Process Biochemistry, 2007, v. 42, pp. 715–720.
  7. Lackner S., Gilbert Vlaeminck S. E., et al. Full-scale partial nitritation/anammox experiences – an application survey. Water Research, 2014, v. 55, pp. 292–303.
  8. Fux C., Siegrist H. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations. Water Science and Technology, 2004, v. 50, pp. 19–26.
  9. Ma B., Zhang L., Zhang P., et al. The feasibility of using a two-stage autotrophic nitrogen removal process to treat sewage. Bioresource Technology, 2011, v. 102, pp. 8331–8334.
  10. Christensson M., Ekstrom S., Andersson A., et al. Experience from start-ups of the first ANITA Mox Plant. Water Science and Technology, 2013, v. 67, pp. 2677–2684.
  11. Abma W. R., Schultz C. E., Mulder J. W., et al. Full scale granular sludge Anammox process. Water Science and Technology, 2007, v. 55, pp. 27–33.
  12. De Clippeleir H., Vlaeminck S. E., De Wilde F., et al. One-stage partial nitritation/anammox at 15oC on pretreated sewage: feasibility demonstration at lab-scale. Applied Microbiology and Biotechnology, 2013, v. 97 (23), pp. 10199–10210.
  13. Persson F., Sultana R., Suarez M., et al. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures. Bioresource Technology, 2014, v. 154, pp. 267–273.
  14. Wang C. C., Lee P. H., Kumar M., et al. Simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification in a field-scale landfill-leachate treatment plant. Journal of Hazardous Materials, 2010, v. 175, pp. 622–628.
  15. Cao Y., Kwok B. H., Yong W. H., et al. Proceedings from IWA/WEF Nutrient Removal and Recovery 2013, Vancouver, Canada, 2013.
  16. Li H., Zhou S., Ma W., et al. Long-term performance and microbial ecology of two-stage PN-ANAMMOX process treating mature landfill leachate. Bioresource Technology, 2014, v. 159, pp. 404–411.
  17. Lackner S., Gilbert E. R. M., Vlaeminck S. E., et al. Full-scale partial nitritation/anammox experiences – an application survey. Water Research, 2014, v. 55, pp. 292–303.
  18. Erguder T. H., Boon N., Vlaemnick S. E., et al. Partial nitrificatioin achieved by pulse sulfide doses in a sequential batch reactor. Environmental Science and Technology, 2008, v. 42, pp. 8715–8720.
  19. Du R., Peng Y., Gao S., et al. Advanced nitrogen removal from wastewater by combining anammox with partial denitrification. Bioresource Technology, 2015, v. 179, pp. 497–504.
  20. Rui D., Shenbin C., Baikun L., et al. Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor. Chemosphere, 2017, v. 174, pp. 399–407.
  21. Scherson Y. D., Wells G. F., Woo S.-G., et al. Nitrogen removal with energy recovery through N2O decomposition. Energy and Environmental Science, 2013, v. 6, pp. 241–248.
  22. Van Dongen U., Jetten M. S. M., van Loosdrecht M. C. M. The SHARON-Anammox process for treatment of ammonium reach wastewater. Water Science and Technology, 2001, v. 44, pp. 153–160.
  23. Scherson Y.D., Lohner K.A., Cantwell, T. Kenny. Proceedings from 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exibit, Nashville, USA, 2010.
  24. Lemaire R. Meet Anita the ammonia eater. Water & Wastewater Treatment, 2012, v. 55 (4), pp. 18–21.
  25. Helbling D. E., Johnson D. R., Honti M., Fenner K. Micropollutant biotransformation kinetics associate with WWTP process performance parameters and microbial community characteristics. Environmental Science and Technology, 2012, v. 46, pp. 10579–10588.
  26. McCarty P. L., Bae J., Kim J. Domestic wastewater treatment as a net energy producer – Can this be achieved? Environment Science and Technology, 2011, v. 45, pp. 7100–7106.
  27. Vlaeminck S. E., Terada A., Smets B. F., et al. Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Applied and Environmental Microbiology, 2010, v. 76, pp. 900–909.
  28. Volcke E. I., Picioreanu C., de Baets B., et al. The granule size distribution in an anammox-based granular sludge reactor affects the conversion – implications for modeling. Biotechnology and Bioengineering, 2012, v. 109, pp. 1629–1636.
  29. Corominas L., Foley J., Guest J. S., et al. Life cycle assessment applied to wastewater treatment: State of the art. Water Research, 2013, v. 47, pp. 5480–5492.

vstmag engfree 200x100 2

Баннер конференции для ВСТ 2023 Ялта 200х200

tv200 200

RAWW 200x200

ecwatech2023 vst200

Wasma23 200x100 stand

myproject msk ru

Российская ассоциация водоснабжения и водоотведения

souz ingenerov 02