№7|2020

DRINKING WATER SUPPLY

DOI 10.35776/MNP.2020.07.04
UDC 628.196

Klebeko Pavel, Romanovskii Valentin

Modified anthracites as effective catalytic materials for deironing of undergroundwater

Summary

The results of the study of modified anthracite as one of the most promising filtering materials that can be used in water treatment for undergroundwater deironing are presented. Anthracite granules were coated with iron oxides by exothermic combustion in solutions in a muffle furnace. Iron-containing sludge from water treatment plants was used as a precursor of iron. The effect of four different reducing agents on the surface-phase composition and properties of modified materials was studied. Using the method of exothermic combustion in solutions anthracite granules were modified with the formation of finely dispersed and crystalline structures of iron oxides on their surface. This had a positive effect on the catalytic ability of the material to underground water deironing. The catalytic properties of the obtained samples and the efficiency of deironing of underground water were investigated.

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Romanovskii V. I., Khort A. A. Modified anthracites for deironing of underground water. Journal of Water Chemistry and Technology, 2017, v. 39, no. 5, pp. 299–304.
  2. Barloková D., Ilavský J. Removal of iron and manganese from water using filtration by natural materials. Polish Journal of Environ. Stud., 2010, v. 19, no. 6, pp. 1117–1122.
  3. Barloková D., Ilavský J. Natural zeolites in water treatment. Vodní hospodářství, 2007, no. 6, pp. 213.
  4. Doula M. K. Removal of Mn2+ ions from drinking water by using clinoptilolite and clinoptilolite-fe oxide system. Water Research, 2006, v. 40, no. 17, pp. 3167.
  5. Diagboya P. N. E., Dikio E. D. Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment. Microporous and Mesoporous Materials, 2018, v. 266, pp. 252–267.
  6. Basheer A. A. New generation nano-adsorbents for the removal of emerging contaminants in water. Journal of Molecular Liquids, 2018, v. 261, pp. 583–593.
  7. Rashid R. A., Jawad A. H., Azlan M., Ishak M., Kasim N. N. FeCl3-activated carbon developed from coconut leaves: characterization and application for methylene blue removal. Sains Malaysiana, 2018, v. 47, no. 3, pp. 603–610.
  8. Moona N., Murphy K. R., Bondelind M., Bergstedt O., Pettersson T. J. Partial renewal of granular activated carbon biofilters for improved drinking water treatment. Environmental Science: Water Research & Technology, 2018, v. 4, no. 4, pp. 529–538.
  9. Lee W., Yoon S., Choe J. K., Lee M., Choi Y. Anionic surfactant modification of activated carbon for enhancing adsorption of ammonium ion from aqueous solution. Science of the Total Environment, 2018, v. 639, pp. 1432–1439.
  10. Романовский В. И., Лихавицкий В. В., Клебеко П. А., Куличик Д. М. Очистка подземных вод от железа с использованием модифицированных антрацитов // Вестник БрГТУ. Водохозяйственное строительство, теплоэнергетика и геоэкология. 2016. № 2 (98). С. 80–83.
  11. Romanovskii V. I., Likhavitskii V. V., Klebeko P. A., Kulichik D. M. [Deironing of underground water with the use of modified anthracites]. Vestnik BrGTU. Vodokhoziaistvennoe Stroitel’stvo, Teploenergetika i Geoekologiia, 2016, no. 2 (98), pp. 80–83. (In Russian).
  12. Романовский В. И., Куличик Д. М., Клебеко П. А., Крышилович Е. В. Получение каталитических материалов для водоподготовки и очистки сточных вод из отходов станций обезжелезивания // Вода magazine. 2017. № 6 (118). С. 12–15.
  13. Romanovskii V. I., Kulichik D. M., Klebeko P. A., Kryshilovich E. V. [Obtaining catalytic materials for water treatment and wastewater treatment from the wastes of deironing plants]. Voda Magazine, 2017, no. 6 (118), pp. 12–15. (In Russian).
  14. Propolsky D., Romanovskaia E., Kwapinski W., Romanovski V. Modified activated carbon for deironing of underground water. Environmental Research, 2020, no. 182, pp. 108996.
  15. Shi Z., Lui F., Yao S. Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe (III) oxide. New carbon materials, 2011, v. 26, no. 4, pp. 299–306.
  16. Ahammed M. M., Davra K. Performance evaluation of biosand filter modified with iron oxide-coated sand for household treatment of drinking water. Desalination, 2011, v. 276, no. 1–3, pp. 287–293.
  17. De León M. A., Rodríguez M., Marchetti S. G., Sapag K., Faccio R., Sergio M., Bussi J. Raw montmorillonite modified with iron for photo-Fenton processes: influence of iron content on textural, structural and catalytic properties. Journal of Environmental Chemical Engineering, 2017, v. 5, no. 5, pp. 4742–4750.
  18. Liu H., Chen Z., Guan Y., Xu S. Role and application of iron in water treatment for nitrogen removal: A review. Chemosphere, 2018, v. 204, pp. 51–62.
  19. Lyubutin I. S., Baskakov A. O., Starchikov S. S., Shih K. Y., Lin C. R., Tseng Y. T., Yang S. S., Han Z. Y., Ogarkova Yu. L., Nikolaichik V. I., Avilov A. S. Synthesis and characterization of graphene modified by iron oxide nanoparticles. Materials Chemistry and Physics, 2018, v. 219, pp. 411–420.
  20. Xuwen H. E., Huimin Y., Yong H. E. Treatment of mine water high in Fe and Mn by modified manganese sand. Mining Science and Technology (China), 2010, v. 20, no. 4, pp. 571–575.
  21. Романовский В. И., Куличик Д. М., Пилипенко М. В., Романовская Е. В. Железосодержащие фотокатализаторы из осадков очистки промывных вод фильтров обезжелезивания // Водоочистка. Водоподготовка. Водоснабжение. 2019. № 5 (137). С. 24–28.
  22. Romanovskii V. I., Kulichik D. M., Pilipenko M. V., Romanovskaia E. V. [Iron-containing photocatalysts from the sludge of wash water purification of deironing filters]. Vodoochistka. Vodopodgotovka. Vodosnabzhenie, 2019, no. 5 (137), pp. 24–28. (In Russian).
  23. Water S. World Health Organization, 2006. Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. V. 1, Recommendations. https://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf.
  24. Ivanets A. I., Kitikova N. V., Shashkova I. L., Oleksiienko O. V., Levchuk I., Sillanpää M. Removal of Zn2+, Fe2+, Cu2+, Pb2+, Cd2+, Ni2+ and Co2+ ions from aqueous solutions using modified phosphate dolomite. Journal of Environmental Chemical Engineering, 2014, v. 2, no. 2, pp. 981–987.

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

souz ingenerov 02

Aquatherm 200x200 gif ru foreign