№2|2021

VENTILATION SYSTEMS

DOI 10.35776/VST.2021.02.06
UDC 697.92

Agafonova V. V., Skibin Aleksandr, Volkov Vasilii

Modeling air exchange in office premises using a microperforated fabric air duct

Summary

The issues of improving the quality of the internal environment of an office building using an advanced air dispersion device – a fabric air duct with micro-orifices are considered. The advantage of this device is supplying the incoming air by jets with a low impulse allowing to locate the devices near the working space in offices eliminating the risk of drafts at the working places. The purpose of the work is a comparative numerical calculation of the efficiency of arranging the air exchange in an office building with two air supply schemes: through supply grilles and through a fabric air duct with microperforation. Modeling was carried out using the commercial STAR-CCM + software package. The system of Reynolds equations with closure using the k-ω SST turbulence model (Mentor) is used to describe the air movement. As part of the study, data on the nature of the change in temperature and air speed along the height of the working area of the office were obtained. It has been determined that while air is supplied through the supply grilles, the temperature (23.3–27.2 °C) and air speed (0.06–0.22 m/s) meet the permissible microclimate standards (GOST 30494-2011); while arranging the air exchange with the use of a microperforated air duct they correspond to the optimal parameters (temperature 23.1–25.4 °С, air speed 0.09–0.13 m/s) that are comfortable for the human body. Thus, the use of a microperforated air duct enhances the efficiency of heat surplus assimilation in comparison with traditional air distribution devices (ventilation grilles).

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

СПИСОК ЛИТЕРАТУРЫ / REFERENCES

  1. Wargocki P., Wyon D. P., Fanger P. O. Productivity is affected by the air quality in offces. Proceedings of Healthy Buildings, 2000, v. 1, espoo 6. 10.8 m.
  2. Wargocki P., Wyon D. P., Baik Y. K., et al. Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air, 2000, v. 9 (3), pp. 165–179.
  3. Lagercrantz L., Wistrand M., Willn U., et al. Negative impact of air pollution on productivity: Previous Danish findings repeated in new Swedish test room. Proceedings of Healthy Buildings, 2000, Finland, v. 1, pp. 653–658.
  4. Fisk W. J. Health and productivity gains from better indoor environments and their implications for the U.S. Department of Energy. Lawrence Berkeley National Laboratory, 2000, no. 0–01, p. 31.
  5. Мансуров Р. Ш., Гурин М. А., Рубель Е. В. Влияние концентрации углекислого газа на организм человека // Universum: Технические науки. Электронный научный журнал. 2017. № 8 (41). URL: http://7universum.com/ru/tech/archive/item/5045 (дата обращения 19.01.2021). Mansurov R. Sh., Gurin M. A., Rubel E. V. [The effect of carbon dioxide concentration on the human body]. Universum: Tekhnicheskie Nauki, 2017, no. 8 (41). URL: http://7universum.com/ru/tech/archive/item/5045 (accessed 19.01.2021). (In Russian).
  6. Бухмиров В. В., Пророкова М. В. Оценка микроклимата в помещениях жилых, общественных и административных зданий // Вестник ИГЭУ. 2015. Вып. 4. С. 1–6. Bukhmirov V. V., Prorokova M. V. [Assessment of the microclimate in residential, public and office buildings]. Vestnik IGEU, 2015, is 4, pp. 1–6. (In Russian).
  7. Рымаров А. Г., Агафонова В. В. Особенности истечения воздуха микроструями // Приволжский научный журнал. 2015. № 1. С. 60–64. Rymarov A. G., Agafonova V. V. [Specific features of air jet efflux]. Privolzhskii Nauchnyi Zhurnal, 2015, no. 1, pp. 60–64. (In Russian).
  8. Рымаров А. Г., Агафонова В. В. Исследование возможности применения текстильных воздуховодов в системах вентиляции // Естественные и технические науки. 2015. № 2. С. 141–143. Rymarov A. G., Agafonova V. V. [Study of the possible use of fabric air ducts in ventilation systems]. Estesstvennye i Tekhnicheskie Nauki, 2015, no. 2, pp. 141–143. (In Russian).
  9. Chen F., Lu W., Wu Q., Chen H., Chen J., Zhou N. Simulation of airflow characteristics induced by fabric air dispersion system with orifices using direct description method. Procedia Engineering, 2017, no. 205, pp. 3112–3116.
  10. Nielsen P. V., Topp C., Sonnichsen M., et al. Air distribution in rooms generated by a textile terminal comparison with mixing and displacement ventilation. ASHRAE Transaction, 2005, no. 8 (1), pp. 733–739.
  11. Nielsen P. V. Personal exposure between people in a room ventilated by textile terminals: with and without personalized ventilation. HVAC&R Research, 2007, no. 13 (4), pp. 635–644.
  12. Chen F., Chen H., Xie J., et al. Air distribution in room ventilated by fabric air dispersion system. Building and Environment, 2011, no. 46 (11), pp. 2121–2129.
  13. Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, v. 32, no. 8, pp. 1598–1605.

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

мнтк баннер

souz ingenerov 02

Aquatherm 200x200 gif ru foreign