07 2021

Number 7 / 2021

To download all number in format PDF (in Russian)The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

Number maintenance (pdf) (doc)

Number abstract  (doc)

Literature lists to articles (doc)

 


 

№7|2021

DRINKING WATER SUPPLY

DOI 10.35776/VST.2021.07.01
UDC 628.16.081

Seliukov Aleksandr

Integrated technology for conditioning low-mineralized cold ground water

Summary

An advanced integrated technology for conditioning low-mineralized cold groundwater is presented. The technology was developed for the purpose of supplying drinking water to the oil and gas-bearing regions of the Tyumen North. With a favorable ratio of fresh water resources and the actual volume of water consumption in this region of Russia, the issue of drinking water supply from underground aquifers remains acute due to the problematic water quality and low efficiency of the treatment facilities. The technology is intended for removing iron, manganese, hydrogen sulfide and providing for the stabilization treatment of water. The main work including laboratory studies and pilot tests was carried out in the period 2001–2020. On the basis of the developed process solutions, water treatment facilities have been built and successfully operated in the cities of Noyabrsk (75 thousand m3/day, 2006) and Novy Urengoy (65 thousand m3/day, 2007). Additional tests of the technology carried out in Khanty-Mansiisk and Komsomolsk-on-Amur confirmed its effectiveness. The technology involves using hydrogen peroxide and potassium permanganate as the basic chemicals for the oxidation of water pollutants, as well as using an alkaline chemical for pH adjustment and stabilization treatment. To meet the requirements of the WHO standard for the concentrations of iron and manganese, an additional flocculant can be used. The data on the composition of groundwater used for testing are summarized, and on their basis the recommended area of application of the developed technology is determined. The basic process flow scheme of conditioning low-mineralized cold groundwater in view of 15 years of experience in operating the existing facilities, and of advanced solutions for dosing and mixing of chemicals, is presented. It is indicated that the technology also provides for a partial reduction in the silicon concentration in purified water (up to 30%). The developed technology ensures stable drinking water with a standard residual concentration of iron, manganese and hydrogen sulfide.

Key words

, , , , , , ,

 

№7|2021

DRINKING WATER SUPPLY

DOI 10.35776/VST.2021.07.02
UDC 628.336.42:66.067.122.2

SMIRNOV A. D., Belyak А. А.

More on testing granular filtering materials in accordance

with GOST R 51641-2000

Summary

Possible errors while determining the properties of filtering granular materials are laid down in GOST R 51641-2000 «Granular filtering materials. General specifications» because of the inaccuracies in the test methods. Based on the experience of NII VODGEO in performing tests of various filtering materials, suggestions on improving and adjusting these methods are presented that provide for obtaining reliable and reproducible results for the estimation of the physical and chemical properties of materials. To obtain actual reproducible results according to the main methods defined in GOST R 51641-2000, correcting the processes of sample preparation, determination of chemical resistance indicators and mechanical strength of the filter material is needed in accordance with the proposed recommendations. These proposals, based on the work experience in testing various filter materials (sand, zeolite, activated carbon, etc.), provide for obtaining reliable reproducible results that do not contradict the methods of GOST R 51641-2000.

Key words

, , , , ,

 

№7|2021

WASTEWATER TREATMENT

DOI 10.35776/VST.2021.07.03
УДК 628.35

Kharkina O. V., Iskalieva Karina, Malich Ekaterina

Comparison of aeration tank calculations using ASM2d and ATV models

Summary

A comparison is made of the results of calculating aeration tanks by ATV model (Standard ATV-DVWK-A131 E «Dimension of Single-Stage Activated Sludge Plants 2000»), that is a stochastic «table» model, and by ASM2d model, that is referred to as theoretical and describes, unlike ATV, biological wastewater treatment processes using enzymatic kinetics formulas. Calculations are performed for the same input data. The calculation results show essentially limited use of ATV model; this model, as originally given in the description of this model by the designers, provides for calculating aeration tanks only for a single value of the effluent quality in terms of ammonia nitrogen as 1 mg/l and does not provide for calculating aeration tanks in terms of nitrites. Moreover, the comparison of ATV and ASM2d show that achieving the specified quality of effluent in terms of ammonia nitrogen as 1 mg/l is possible only at specific values of the kinetic constants determined by the authors in this article; whereas, any change in at least one kinetic parameter of the wastewater results in an increase in the required aerobic age of activated sludge and, as a consequence, in the calculated volume of the aerobic zone by tens of percent, which proves the risk of not achieving the required effluent quality while using ATV model even for ammonium nitrogen concentration of 1 mg/l. Taking into account the fact that ATV Method does not provide for calculating aeration tanks for the effluent quality in terms of nitrites, the results of our calculation show that the aerobic age of activated sludge of 4.05 days for a temperature of 17 ºС proposed in ATV will make it possible to achieve the effluent quality in terms of nitrite nitrogen, 0.35–0.52 mg/l N–NO2, proving the unavailability of ATV, if the requirements to the effluent quality in terms of nitrites are specified. The authors, on the basis of the calculations, make conclusions about the risk of failure to achieve the effluent quality in terms of ammonia nitrogen as well as 1 mg/l while using ATV, because ATV is a stochastic model, that is, all dependencies presented in this method have been determined for the specific operating conditions. Moreover, as specified in the ATV description, this method, even in limited conditions, is applicable strictly for urban wastewater. The calculations show that if there are requirements for the effluent quality in terms of nitrites, regardless of the required concentration value of nitrites, the ATV method is absolutely not suitable, while ASM2d, taking into account the fact that it is based on the formulas of enzymatic kinetics, provides for calculating aeration tanks for any required effluent quality in terms of both ammonium nitrogen and nitrite nitrogen and is applicable for any type of wastewater.

Key words

, , , , , , , ,

 

№7|2021

WASTEWATER TREATMENT

DOI 10.35776/VST.2021.07.04
UDC 628.32:66.081.63

Il’ina Marina, Kurichkin Ivan

Optimization of the process of membrane separation of MSW landfill leachate with a high concentration of hardness saltsOptimization of the process of membrane separation of MSW landfill leachate with a high concentration of hardness salts

Summary

The aspects of optimizing the process of reverse osmosis membrane separation of the leachate of a municipal solid waste landfill with a high concentration of hardness salts is considered. The research was carried out in an experimental two-stage reverse osmosis unit. To study possible increasing the efficiency of the membrane reverse osmosis separation of the leachate and, in particular, of the membrane flux, various inhibitors of sediment formation were added to the feed clarified percolating water (before the membrane separation): Avista Vitec 3000, Clarofos 381, and sodium tripolyphosphate. Percolating water of the Mar’inskii solid waste landfill (Vladimir region) with a high concentration of hardness salts was used as a researchable aqueous solution. Based on the results of the executed studies, the effect of various inhibitors of sediment formation on the process of membrane reverse osmosis separation was estimated in terms of the membrane flux. The positive effect on membrane separation of the inhibitors of the sediment formation of hardness salts on the membrane surface added into the feed clarified leachate of the solid waste landfill has been proven. The best results in increasing the membrane flux during the purification of clarified percolating water were obtained with the use of the Avista Vitec 3000 inhibitor.  The executed studies have shown that while choosing a sediment formation inhibitor, the specific composition of the feed water, the operating mode of the membrane equipment and the special requirements of the purification technology should be taken into account.

Key words

, , , , , ,

 

№7|2021

WASTEWATER SLUDGE TREATMENT

DOI 10.35776/VST.2021.07.05
UDC 628.336.7

Markelov Aleksei, Shiriaevskii Valerii, Pupyrev E. I., Sheremeta Ignat, Nikitin Vasilii

The technology of wastewater sludge vitrification in comparison with other processing methodsThe technology of wastewater sludge vitrification in comparison with other processing methods

Summary

The experts of Ekopromtekh R & D Centre, LLC have developed an innovative technology for vitrification of wastewater sludge that provides for reducing significantly the volume of wastes and obtaining a safe vitrified material to be used in construction. A comparison of the vitrification technology with other methods of sludge processing is given: depositing, sludge digestion in digesters, drying, pyrolysis, catalytic and classical incineration. In Russia, more than 90% of the generated sludge is landfilled. If this trend persists, an increase in the sludge hauling distance is inevitable. Using unprocessed sludge as fertilizer increases the risk of soil contamination. Financial models of projects that envisage using digesters and selling biogas or electricity do not pay off. In case of using the drying method to obtain fuel from sludge, almost the same amount of thermal energy is consumed as the final product contains. Therefore, the cost of dried sludge as a fuel will not be less than the cost of natural gas, and taking into account other operating costs, including delivery to the consumer, will exceed the cost of gas by 2–3 times. Pyrolysis to obtain marketable products is under development and involves a lot of research. The technology of catalytic incineration of sludge without preliminary drying does not solve the main problems of any incineration process and causes certain difficulties: the risk of emission of superecotoxicants remains; the ash must be disposed of, the autothermal regime is difficult to maintain, the catalyst wears out and requires replacement. The vitrification technology has a number of advantages, it is ready for scaling and industrial implementation.

Key words

, , , , , , , , , ,

 

№7|2021

ПРОЕКТИРОВАНИЕ СИСТЕМ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ

DOI 10.35776/VST.2021.07.06
УДК 006.053:628.1/3

Pupyrev E. I., Shiriaevskii Valerii, Gerasimov Vladislav

Pre-project evaluation of the efficiency of water and sludge treatment facilities

Summary

Designing water treatment facilities has a centuries-old history. At present, the world project community has developed practically unified process flow schemes for natural water treatment to the drinking water quality and domestic wastewater treatment. The professional community practices an intensive exchange of ideas, technologies, and industrial products in the field of water purification. Recently, mathematical methods for calculating module structures have been actively developing, methods of digital (computer) design are used. For complex projects, first of all, pre-project work is carried out. Methods for designing water treatment facilities remain inherently heuristic, and a number of design solutions can be proposed for the same problem statement. The digital design environment provides for tackling new problems, first of all, for designing treatment facilities that are optimal not only in terms of the water quality and other technical parameters, but at the same time, if possible, in terms of the economic efficiency. A method is proposed for the development of a pre-design using multivariate mathematical procedures that allow approaching the optimal combination of technical and financial indicators of the future water treatment facility.

Key words

, , , , , , , ,

 

№7|2021

SURFACE RUNOFF TREATMENT

DOI 10.35776/VST.2021.07.07
UDC 628.221

Volkov Sergei, Zhitenev A. I., Rublevskaya O. N., Kurganov Iu. A., Kostenko I. G., IGNATCHIK V. S., Ignatchik S. Iu., Kuznetsova N. V., Seniukovich Mikhail

Specific features of estimating calculated rainfall rates with account

Summary

The analysis of official data resources shows that the distribution of extreme rainfall over the territory is carried out with account of the microclimatic features of the area. To estimate the degree of reliability of such patterns within megalopolises, experimental studies were carried out, where the wastewater disposal system of St. Petersburg was assumed as an experimental base; a network of 34 automatic rain gauges recording with an interval of 5 minutes was assumed as a measuring instrument, and a base was used as experimental information, i. e., a measurement data base for six years. As a result of the research, it has been established that a microclimate is formed in the urban environment that differs from the climate outside it. Besides, on a megacity scale, there are microclimatic zones where the dependences of precipitation intensities on their frequency can differ significantly. In this case, the differences begin to manifest at periods p of one-time excess of the calculated rainfall intensity from 1.5–2 years, whereas at lower values, no differences have been found. The result obtained is consistent with the research data obtained by other authors, who experimentally established that the amount of extreme rainfall increased in those areas of megacities, as a rule, historical ones, where fewer green spaces are located, and, accordingly, a higher degree of surface overheating in summer is recorded.

Key words

, , , , ,

 

№7|2021

ENERGY CONSERVATION

DOI 10.35776/VST.2021.07.08
UDC 621.65:628.112.24

Fisenko V. N.

Energy audit of pumps in industrial and municipal systems and labelingEnergy audit of pumps in industrial and municipal systems and labelingof the operational efficiency: systematic approach (part 2)

 

 

vstmag engfree 200x100 2

Баннер конференции для ВСТ 3

Wasma23 200x100 stand

myproject msk ru

Российская ассоциация водоснабжения и водоотведения

souz ingenerov 02