DOI 10.35776/VST.2021.02.02
UDC 628.164

Larionov S. Iu., Panteleev A. A., Riabchikov B. E., Kasatochkin A. S.

Chemical water softening systems with a contact media blanket
(a review)


Chemical softening of drinking water is used quite rarely due to the difficulty of preparing chemicals, maintaining the required and constant water temperature, complicated design and maintenance of the installations under the conditions of a water intake. A particular problem is waste utilization. In the middle of the last century, so-called vortex reactors with contact media began to be used that had a significantly higher capacity and did not require water heating. In the reactors solid granules of carbonate are generated, which is equivalent to the modern concept of zero liquid discharge, i. e., closed cycle technology. In Russia, they were designed at VNII VODGEO; however, did not gain widespread use. The next step was the development of reactors with fluidized bed of contact media. These apparatuses are widely used in Europe and the USA. At present, Mediana-Filter SPC, JSC is busy with designing and studying such reactors. They have a high specific capacity – 50–100 m3/(m2·h) – and are much easier to operate and maintain than clarifiers. The capacity of the plants reaches thousands of cubic meters per hour. The review considers the stages of development, ways of improving the reactors, their advantages and disadvantages.
и существенно проще в обслуживании, чем осветлители. Производительность установок достигает тысяч кубометров в час. В обзоре рассмотрены стадии развития, пути усовершенствования реакторов, их преимущества и недостатки.

Key words

, , , , , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe


  1. Фрог Б. Н., Левченко А. П. Водоподготовка. – М.: МГУ, 2003. 680 с. Frog B. N., Levchenko A. P. Vodopodgotovka [Water treatment. Moscow, MGU Publ., 2003, 680 p.].
  2. Копылов А. С., Очков В. Ф., Чудова Ю. В. Процессы и аппараты передовых технологий водоподготовки и их программированные расчеты. – М.: Издательство МЭИ, 2009. 222 с. Kopylov A. S., Ochkov V. F., Chudova Iu. V. Protsessy i apparaty peredovykh tekhnologii vodopodgotovki i ikh programmirovannye raschety [Processes and apparatuses of advanced water treatment technologies and their programed calculations. Moscow, MEI Publ., 2009, 222 p.].
  3. Технический справочник по обработке воды. В 2 т. – СПб.: Новый журнал, 2007. 1696 с. Tekhnicheskii spravochnik po obrabotke vody [Technical reference for water treatment. In 2 v. Saint-Petersburg, Novyi Zhurnal Publ., 2007, 1696 p.].
  4. Кишиневский В. А. Технология подготовки воды в энергетике. – Одесса: Феникс, 2008. 400 с. Kishinevskii V. A. Tekhnologiia podgotovki vody v energetike [Water treatment technology in power engineering. Odessa, Feniks Publ., 2008, 400 p.].
  5. High Rate Softening for industry. MULTIFLO™ and ACTIFLO® Softening technologies provide high rate softening in a compact design for industrial applications. http://technomaps.veoliawatertechnologies.com/multiflo/en/ (accessed July 13, 2015).
  6. Winklmann A., Hutchins J. Pioneering Pellet softening treatment in Pennsylvania. Brochure. 42 р. file:///C:/Users/riabc/Downloads/Winklmann.pdf (accessed February 1, 2021).
  7. Graveland A., VanDijk J. C., DeMoel P. J., Oomen J. Developments in water softening by means of pellet reactors, Journal AWWA, 1983, no. 75, pp. 619–625.
  8. Harms J. R., Robinson R. B. Characterization of fluidized bed crystallizers used for softening in South Florida. Environmental Engineering, 1990, pp. 717–724. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0066743 (accessed February 1, 2021).
  9. Ушаков Л. Д., Нашвильева Т. В. Умягчение минерализованных вод в вихревых реакторах с применением едкого натра / Опреснение минерализованных вод. – М., ВНИИ ВОДГЕО, 1987. 52 с. Ushakov L. D., Nashvil’eva T. V. Umiagchenie mineralizovannykh vod v vikhrevykh reaktorakh s primeneniem edkogo natra. Opresnenie mineralizavannykh vod [Softening of saline waters in vortex reactors using caustic soda. Desalination of saline waters. Moscow, VNII VODGEO, 1987, 52 p.].
  10. Журавлев С. П. Разработка технологических схем обработки природных вод и отработанных регенерационных растворов ВПУ с выделением нерастворимых соединений: Дисс. … канд. техн. наук. – М., 2006. 155 с. Zhuravlev S. P. Razrabotka tekhnologicheskikh skhem obrabotki prirodnykh vod i otrabotannykh regeneratsionnykh rastvorov VPU s vydeleniem nerastvorimykh soedinenii [Development of process flow schemes for natural water purification and treatment of spent regeneration solutions of the WTP with the release of insoluble compounds. Synopsis of a thesis for Ph. D. degree in Engineering. Moscow, 2006, 155 p.].
  11. Пат. 2156747, РФ. МПК C02F 5/06 B04C 3/00. Вихревой реактор для декарбонизации воды / Амосова Э. Г., Долгополов П. И., Нечаев А. П. // Изобретения. Полезные модели. 2000. № 27. Amosova E. G., Dolgopolov P. I., Nechaev A. P. [Pat. 2156747, RF. IPC C02F 5/06 B04C 3/00. Vortex reactor for water decarbonization]. Izobreteniia. Poleznye Modeli, 2000, no. 27. (In Russian).
  12. Долгополов П. И. Разработка технологических схем реагентного умягчения природных вод для целей хозяйственно-питьевого водоснабжения: Дисс. … канд. техн. наук. – М., 1992. 150 с. Dolgopolov P. I. Razrabotka tekhnologicgeskikh skhem umiagcheniia prirodnykh vod dlia tselei khoziaistvenno-pit’evogo vodosnabzheniia [Development of process flow schemes for chemical softening of natural water for public water supply. Synopsis of a thesis for Ph. D. degree in Engineering. Moscow, 1992, 150 p.].
  13. Амосова Э. Г., Долгополов П. И., Журавлев С. П. Реа­гентное умягчение природной воды в вихревых реакторах // Электрические станции. 2005. № 9. С. 23–29. Amosova E. G., Dolgopolov P. I., Zhuravlev S. P. [Chemical softening of natural water in vortex reactors]. Elektricheskie Stantsii, 2005, no. 9, pp. 23–29. (In Russian).
  14. Winklmann A., McCreary S. Pellet softening treatment: is it right for your community? Brochure. Black and Veatch 27.08.2014. 19 p. file:///C:/Users/riabc/Downloads/1300._pellet_softening_treatment._McCreary%20(1).pdf.
  15. Janet Snedecor P. E., Tom Peters, Milt P. E., Larsen P. E. Pellet softening: Hardness, iron and manganese removal pellet softening: Pellet Softening. AWWA Conference, 2008.
  16. Gyrazur décarbonatation catalytique à lit fluidisé. Brochure. 2 р. file:///C:/Users/riabc/Downloads/Gyrazur_Decarbo_M-EP-002-FR.pdf (accessed August 16, 2018).
  17. Сайт фирмы «SUEZ Water Technologies» (бывшая Degrémont): http://www.suez.com (accessed February 1, 2021).
  18. Hofman J., Kramer O., Peter van Hoek J., Nederlof M., Groenendijk M. Twenty years of experience with central softening in the Netherlands: Water quality – Environmental benefits – Costs. April 2006, 205 р.
  19. ACTINA™ Advanced pellet softening to reduce potable water hardness. Veolia Water Technologies. 4 р. file:///C:/Users/riabc/Downloads/ActinaBrochure2017.pdf (accessed February 1, 2021).
  20. Actina™ is a drinking water softening process by pellet softening designed to limit calcium carbonate deposits. https://www.veoliawatertechnologies.com/en/products/actina (accessed February 1, 2021).
  21. Softening. Water treatment. Unit processes in drinking water treatment. W. Masschelein. 1992, pр. 153–182. Pellet reactor. https://docplayer.net/31266734-Softening-water-treatment.html (accessed February 1, 2021).
  22. Tang C., Jorgensen H. M., Lopato L., Albrechtsen H.-J. Softening of drinking water by the pellet reactor – Effects of influent water composition on calcium carbonate pellet characteristics. Science of the Total Environment, 2018, no. 652, pp. 538–548.
  23. Mahvi A., Shafiee F., Naddafi K. Feasibility study of crystallization process for water softening in a pellet reactor. International Journal of Environmental Science & Technology, 2005, v. 1, no. 4, pp. 301–304.
  24. Kornhaas U. Neue massstäbe in der zentralen enthärtung des trinkwassers. Alwin Eppler. GWA, 2011, no. 8, pp. 600–602.
  25. Rietveld L. C., Van Schagen K., Kramer O. Optimal operation the pellet softening process. American Water Works Association, 2006, 15 р. https://www.researchgate.net/publication/287059504 (accessed May 5, 2020).
  26. Amiri1 M. C., Ostovar M., Amir M. T. A cost effective technique for chemical wastes reduction in lime water softening process. 4th International Conference on Chemical, Biological and Environmental Engineering. IPCBEE, 2012, v. 43.
  27. Graveland S., Van Dijk A., De Moel J. C., Oomen P. J. Developments in water softening by means of pellet reactors. Journal AWWA, 1983, v. 43, pp. 619–625. https://www.researchgate.net/publication/254154598_Developments_in_water_softening_by_means_of_pellet_reactors (accessed February 1, 2021).
  28. Sobhan R. An improved kinetic model and optimized configurations for pellet softening Modeling and optimization of pellet softening process in drinking water treatment Amsterdam, TU Delft Civil Engineering and Geosciences, 2019, 96 р.
  29. Schetters M. J. A. Grinded Dutch calcite as seeding material in the pellet softening process. Delft University of Technology, 2013, 78 р.
  30. Houwelingen G., Bond R., Seacord T., Fessler E. Experiences with pellet reactor softening as pretreatment for inland desalination in the USA. Desalination and Water Treatment, 2010, v. 13, no. 1, pр. 259–266.
  31. Schagen K. M., Babuska R., Rietveld L. C., Wuister J., Veersma A. M. J. Modeling and predictive control of pellet reactors for water softening. IFAC. 16th Triennial World Congress, Prague, Czech Republic, 2005, pp. 103–108.
  32. Mahvi A. H., Naddafi S. K. Feasibility study of crystallization process for water softening in a pellet reactor. International Journal of Environmental Science & Technology, 2005, v. 1, no. 4, pp. 301–304.
  33. Catalytic decarbonation: the Saur water softening solution proves its effectiveness! https://www.saur.com/en/eco-regions/catalytic-decarbonation-the-saur-water-softening-solution-proves-its-effectiveness/ (accessed June 25, 2020).
  34. Hu R. Z., Huang T. L., Wen G., Yang S. Y. Modelling particle growth of calcium carbonate in a pilot-scale pellet fluidized bed reactor. Water Science and Technology Water Supply, 2017, no. 5, pр. 643–651.
  35. Ashoor F.A., Zmat A.D., AlDahhan M. H. Pellet softening process for the removal of the groundwater hardness; modelling and experimentation. Al-qadisiyah Journal for Engineering Sciences, 2019, no. 12, pp. 135–143.
  36. Demonstrationsanlæg til blødgøring af drikkevand Fyrtårnsprojekt «Fremtidens Drikkevandsforsyning» Arbejdspakke. Demonstrationsanlæg til blødgøring af drikkeva, 2016, 46 р.
  37. Hu R., Huang T., Zhi A., Tang Z. Full-scale experimental study of groundwater softening in a circulating pellet fluidized reactor. International Journal of Environmental Research and Public Health Received, 17 June 2018; Accepted: 26 July 2018; Published: 27 July 2018.
  38. Experimental study of groundwater softening in a circulating pellet fluidized reactor. International Journal of Environmental Research and Public Health Received, 2018, v. 15, no. 1592, pp. 1–11.
  39. Пат. 198959, РФ. МПК С01F 1/00. Реактор для реагентного умягчения воды / Рябчиков Б. Е., Пантелеев А. А., Ларионов С. Ю., Шилов М. М., Касаточкин А. С. // Изобретения. Полезные модели. 2020. № 22. Riabchikov B. E., Panteleev A. A., Larionov S. Iu., Shilov M. M., Kasatochkin A. S. [Pat. 198959, RF. IPC С01F 1/00. Reactor for chemical water softening]. Izobreteniia. Poleznye Modeli, 2020, no. 22. (In Russian).

vstmag engfree 200x100 2

Баннер конференции для ВСТ 3

ecwatech2023 vst200

Wasma23 200x100 stand

myproject msk ru

Российская ассоциация водоснабжения и водоотведения

souz ingenerov 02