№04|2023

WATER TREATMENT

UDC 628.16
DOI 10.35776/VST.2023.04.02

Aleksandrov Roman, Kagramanov Georgii, Laguntsov Nikolai

Developing a unit for water pretreatment for the hybrid chemical-membrane purification system

Summary

At the present day developing and upgrading the methods for water pretreatment in membrane purification plants is a relevant objective. The purpose of this work has been the development and study of a small-sized water pretreatment unit based on the chemical method for the purification of heavily polluted water with high efficiency in terms of the degree of purification, chemical and energy consumption. A water pretreatment unit based on a dosing and mixing device for chemicals including jet hydrodynamic mixers – ejectors, has been developed. The device allows dosing chemical solutions in a wide range of injection coefficients and provides for improving the removal of hardness salts and heavy metals by more than 20%, and of oil products – by 8% compared to standard mixing with a blade mixer (120 rpm) owing to the mass transfer proceeding in an intense hydrodynamic field at Re >> Recr. Hybrid alumosilicic chemical was developed and studied that provided for reducing the concentration of toxic residual aluminum in purified water by an order of magnitude more (up to 0.02–0.05 mg/l) in comparison with other aluminum-containing reagents owing to the formation of mesoporous alumosilicic structures possessing the effect of volumetric sorption in 6–8 pH range. An experimental model of a portable water treatment plant with a unit of chemical pretreatment and membrane post-treatment based on the microfiltration technology using a porous titanium carbide membrane and low-pressure reverse osmosis technology with the use of a membrane made of a thin-film polyamide composite has been designed. It is shown that using a pretreatment unit provides for increasing the performance of the microfiltration device up to 3.7 times while removing oil products and hardness salts from water, and up to 4.3 times while removing heavy metals (copper). It is also shown that the developed version of the portable plant provides for a preset degree removing the main pollutants from heavily polluted wastewater in at the lowest specific energy consumption of 2.57 kWh/m3 compared to the analogues.

Key words

, , , , , , ,

For citation: Aleksandrov R. A., Kagramanov G. G., Laguntsov N. I. Developing a unit for water pretreatment for the hybrid chemical-membrane purification system. Vodosnabzhenie i Sanitarnaia Tekhnika, 2023, no. 4, pp. 8–20. DOI: 10.35776/VST.2023.04.02.
(In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Лин М. М., Фарносова Е. Н., Каграманов Г. Г. Очистка сточных вод от тяжелых металлов методами нано­фильтрации и ионного обмена // Химическая промышленность сегодня. 2017. № 8. С. 30–35.
    Lin M. M., Farnosova E. N., Kagramanov G. G. [Removing heavy metals from wastewater by nanofiltration and ion exchange methods]. Khimicheskaia Promyshlennost’ Segodnia, 2017, no. 8, pp. 30–35. (In Russian).
  2. Юрчевский Е. Б., Первов А. Г., Пичугина М. А. Очистка воды от органических загрязнений с использованием мембранных технологий водоподготовки // Энергосбережение и водоподготовка. 2016. № 5. С. 32–45.
    Iurchevskii E. B., Pervov A. G., Pichugina M. A. [Removing organic pollution from water with the use of membrane water treatment technologies]. Energosberezhenie i Vodopodgotovka, 2016, no. 5, pp. 32–45. (In Russian).
  3. Hilal N., Kochkodan V., Abdulgader H. A., Johnson D. A. Combined ion exchange–nanofiltration process for water desalination. Desalination, 2015, no. 363, pp. 51–57.
  4. Бойко Н. И., Одарюк В. А., Сафонов А. В. Применение мембранных технологий в очистке воды // Технологии гражданской безопасности. 2014. Т. 11. № 2 (40). С. 64–69.
    Boiko N. I., Odariuk V. A., Safonov A. V. [The use of membrane technologies in water treatment]. Tekhnologii Grazhdanskoi Bezopasnosti, 2014, v. 11, no. 2 (40), pp. 64–69. (In Russian).
  5. Свитцов А. А., Копылова Л. Е., Голованева Н. В. Особенности комбинированного реагентно-мембранного метода очистки минерализованных вод // Водоочистка. Водоподготовка. Водоснабжение. 2015. № 5. С. 28–31.
    Svittsov A. A., Kopylova L. E., Golovaneva N. V. [Specific features of the combined chemical-membrane method of saline water treatment]. Vodoochistka. Vodopodgotovka. Vodosnabzhenie, 2015, no. 5, pp. 28–31. (In Russian).
  6. Григорьян О. Ю. Повышение проницаемости мембран при разделении жидких высокомолекулярных полидисперсных систем / Сборник статей Всероссийской научно-практической конференции «Инновационные направления развития в образовании, экономике, технике и технологиях». Ставрополь, 2–4 апреля 2019 г. – Ставрополь: Ставролит, 2019. С. 282–286.
    Grigor’ian O. Iu. [Increasing the permeability of membranes during the separation of liquid high-molecular polydisperse systems]. Collection of papers of the All-Russian Scientific and Practical Conference «Innovative development directions in education, economics, engineering and technology». Stavropol, Stavrolit Publ., 2019, pp. 282–286. (In Russian).
  7. Труберг А. А., Силос О. В., Терпугов Г. В. Влияние концентрации растворенных веществ в стоках сульфатных целлюлозно-бумажных заводов на селективность полупроницаемых мембран // Химическая промышленность сегодня. 2010. № 11. С. 38–42.
    Truberg A. A., Siloc O. V., Terpugov G. V. [Effect of the concentration of dissolved substances in the wastewater of sulfate pulp and paper mills on the selectivity of semipermeable membranes]. Khimicheskaia Promyshlennost’ Segodnia, 2010, no. 11, pp. 38–42. (In Russian).
  8. Yin Z., Yang C., Long C., Li A. Effect of integrated pretreatment technologies on RO membrane fouling for treating textile secondary effluent: Laboratory and pilot-scale experiments. Chemical Engineering Journal, 2018, v. 332, pp. 109–117.
  9. Wang F. H., Hao H. T., Sun R. F., Li S. Y., Han R. M., Papelis C., Zhang Y. Bench-scale and pilot-scale evaluation of coagulation pre-treatment for wastewater reused by reverse osmosis in a petrochemical circulating cooling water system. Desalination, 2014, v. 335, no. 1, pp. 64–69.
  10. Khan M. H., Ha D. H., Jung J. Optimizing the industrial wastewater pretreatment by activated carbon and coagulation: Effects of hydrophobicity/hydrophilicity and molecular weights of dissolved organics. Journal of Environmental Science and Health, part A, 2013, v. 48, no. 5, pp. 534–542.
  11. Vincent-Vela M. C., Alvarez-Blanco S., Lora-Garcia J., Carbonell-Alcaina C., Saez Munoz M. Application of several pretreatment technologies to a wastewater effluent of a petrochemical industry finally treated with reverse osmosis. Desalination and Water Treatment, 2015, v. 55 (13), pp. 3653–3661.
  12. Sari M. A., Chellam S. Reverse osmosis fouling during pilot-scale municipal water reuse: evidence for aluminum coagulant carryover. Journal of Membrane Science, 2016, no. 520, pp. 231–239.
  13. Кулак А. П., Шестозуб А. Б., Коробов В. И. Приближенный расчет струйных насосов // Прикладная гид­ромеханика. 2011. Т. 13. № 1. С. 29–34.
    Kulak A. P., Shestozub A. B., Korobov V. I. [Approximate calculation of jet pumps]. Prikladnaia Gidromekhanika, 2011, v. 13, no. 1, pp. 29–34. (In Russian).
  14. Соколов Е. Я., Зингер Н. М. Струйные аппараты. – М.: Энергоатомиздат, 1989. 352 с.
    Sokolov E. Ia., Zinger N. M. Struinye apparaty [Jet devices. Moscow, Energoatomizdat Publ., 1989, 352 p.].
  15. Патент RU 2661584 C1. МПК C01F 7/74 C02F 1/52 C02F 1/28 C01B 33/26. Способ получения гибридного алюмокремниевого реагента для очистки природных и промышленных сточных вод и способ очистки природных и промышленных сточных вод этим реагентом / Александров Р. А., Курчатов И. М., Лагунцов Н. И., Феклистов Д. Ю. // Изобретения. Полезные модели. 2018. № 20.
    Aleksandrov R. A., Kurchatov I. M., Laguntsov N. I., Feklistov D. Iu. [Pat. RU 2661584 C1. IPC C01F 7/74 C02F 1/52 C02F 1/28 C01B 33/26. Method for preparation hybrid alumosilicic chemical for natural and industrial wastewater treatment and a method for with this chemical]. Izobreteniia. Poleznye Modeli, 2018, no. 20. (In Russian).
  16. Захаров В. И., Калинников В. Т., Матвеев В. А., Майо­ров Д. В. Химико-технологические основы и разработка новых направлений комплексной переработки и использования щелочных алюмосиликатов. Часть 1. – Апатиты, Кольский научный центр РАН, 1995. 181 с.
    Zakharov V. I., Kalinnikov V. T., Matveev V. A., Maiorov D. V. Khimiko-tekhnologicheskie osnovy i razrabotka novykh napravlenii kompleksnoi pererabotki i ispol’zovaniia shchelochnykh aliumosilikatov. Chast’ 1 [Chemical and technological foundations and development of new directions for the complex processing and use of alkaline aluminosilicates. Part 1. Apatity, Kola Science Center RAS Publ., 1995, 181 p.].
  17. Uvarov V. I., Alymov M. I., Kachin A. R., Loryan V. E., Shustov V. S., Fedotov A. S., Tsodikov M. V. SHS membranes based on materials of mica-like structure. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, v. 558, no. 1, 012053.

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

souz ingenerov 02

Aquatherm 200x200 gif ru foreign