№02|2023

WASTEWATER TREATMENT

UDC 628.161.2:544.77.052.5:628.16.094.3-926.214
DOI 10.35776/VST.2023.02.07

Pilipenko Marina, Dubina Aleksandr, Likhavitskii Vitalii

Combining ultrasonic treatment and ozonation for wastewater treatment of dyeing plants

Summary

The results of studying the efficiency of purification of model and real wastewater from dyeing and finishing works by combining ultrasonic treatment and ozonation are presented. The effect of the treatment time, ozone concentration in the gas mixture on the purification efficiency has been studied. The purification efficiency was evaluated by optical density and COD. As a result of the study up to 12% increase in the efficiency of wastewater treatment was shown while combining flotation with ozone-air mixture instead of air with ultrasonic treatment. This effect can be associated, first of all, with the dispersion of ozone-air mixture bubbles that results in an increase in the surface area, and, accordingly, in an increase in the kinetics of mass transfer – ozone dissolution.

Key words

, , , ,

For citation: Pilipenko M. V., Dubina A. V., Likhavitskii V. V. Combining ultrasonic treatment and ozonation for wastewater treatment of dyeing plants. Vodosnabzhenie i Sanitarnaia Tekhnika, 2023, no. 2, pp. 53–58. DOI: 10.35776/VST.2023.02.07. (In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Choi M., et al. Removal of pharmaceutical residue in municipal wastewater by DAF (dissolved air flotation) – MBR (membrane bioreactor) and ozone oxidation. Water Science and Technology, 2012, v. 66 (12), pp. 2546–2555.
  2. Oliveira G. A., et al. Combined system for wastewater treatment: ozonization and coagulation via tannin-based agent for harvesting microalgae by dissolved air flotation. Environmental Technology, 2022, v. 43 (9), pp. 1370–1380.
  3. Lee B. H., et al. Dissolved ozone flotation (DOF) – a promising technology in municipal wastewater treatment. Desalination, 2008, v. 225 (1–3), pp. 260–273.
  4. Романовский В. И., Лихавицкий В. В., Пилипенко М. В. Сравнительный анализ методов очистки сточных вод от красителей // Вода Magazine. 2016. № 12 (112). С. 54–58.
    Romanovski V. I., Likhavitskii V. V., Pilipenko M. V. [Comparative analysis of the methods of removing dyes from wastewater]. Voda Magazine, 2016, no. 12 (112), pp. 54–58. (In Russian).
  5. Киршанкова Е. В. Ультразвуковая электрокоагуляционная очистка сточных вод от поверхностно-активных веществ. Дисс. … кандидата технических наук. – М., 2006. 151 с.
    Kirshankova E. V. Ul’trazvukovaia elektrokoaguliatsionnaia ochistka stochnykh vod ot poverkhnostno-aktivnykh veshchestv [Removing surface-active substances from wastewater by ultrasonic electrocoagulation. Synopsis of a thesis for Ph. D. degree in Engineering. Moscow, 2006, 151 p.].
  6. Das S., Bhat A. P., Gogate P. R. Degradation of dyes using hydrodynamic cavitation: Process overview and cost estimation. Journal of Water Process Engineering, 2021, v. 42, 102126.
  7. Moradi M., Vasseghian Y., Arabzade H., Khaneghah A. M. Various wastewaters treatment by sono-electrocoagulation process: a comprehensive review of operational parameters and future outlook. Chemosphere, 2021, v. 263, 128314.
  8. Wang B., Shi W., Zhang H., Ren H., Xiong M. Promoting the ozone-liquid mass transfer through external physical fields and their applications in wastewater treatment: a review. Journal of Environmental Chemical Engineering, 2021, v. 9 (5), 106115.
  9. Ji G., Zhang B., Wu Y. Combined ultrasound/ozone degradation of carbazole in APG1214 surfactant solution. Journal of Hazardous Materials, 2012, v. 225, pp. 1–7.
  10. Ince N. H., Tezcanlı́ G. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes and Pigments, 2021, v. 49 (3), pp. 145–153.
  11. He Z., Lin L., Song S., Xia M., Xu L., Ying H., Chen J. Mineralization of CI Reactive Blue 19 by ozonation combined with sonolysis: Performance optimization and degradation mechanism. Separation and purification technology, 2008, v. 62 (2), pp. 376–381.
  12. Rekhate C. V., Srivastava J. K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater: a review. Chemical Engineering Journal Advances, 2020, v. 3, 100031.
  13. Романовский В. И., Лихавицкий В. В., Гуринович А. Д. Исследование растворимости озона в воде по высоте столба жидкости // Труды БГТУ. 2015. № 3 (176). Химия и технология неорганических веществ. C. 113–118.
    Romanovski V. I., Likhavitskii V. V., Gurinovich A. D. [Study of ozone solubility in water by the height of the liquid column]. Writings of BSTU, 2015, no. 3 (176), Chemistry and Technology of Inorganic Substances, pp. 113–118. (In Russian).
  14. Романовский В. И., Лихавицкий В. В., Рымовская М. В., Гуринович А. Д. Определение основных параметров дезинфекции и обеззараживания озоном сооружений питьевого водоснабжения // Труды БГТУ. 2015. № 3 (176). Химия и технология неорганических веществ. C. 108–112.
    Romanovski V. I., Likhavitskii V. V., Rymovskaia M. V., Gurinovich A. D. [Determination of the main parameters of ozone disinfection of drinking water supply facilities]. Writings of BSTU, 2015, no. 3 (176), Chemistry and Technology of Inorganic Substances, pp. 108–112. (In Russian).
  15. Романовский В. И., Рымовская М. В., Бессонова Ю. Н., Ковалевская А. М., Лихавицкий В. В. Анализ эффективности дезинфекции сооружений питьевого водоснабжения с использованием хлорсодержащих дезинфицирующих средств и озона // Вестник БрГТУ. 2015. № 2 (92). Водохозяйственное строительство, теп­лоэнергетика и геоэкология. С. 68–71.
    Romanovski V. I., Rymovskaia M. V., Bessonova Iu. N., Kovalevskaia A. M., Likhavitskii V. V. [Analysis of the effectiveness of disinfection of drinking water supply facilities using chlorine-containing disinfectants and ozone]. Vestnik BrSTU, 2015, no. 2 (92), Water Engineering, Thermal Power Enginnering and Geoecology, pp. 68–71. (In Russian).
  16. Романовский В. И., Бессонова Ю. Н. Сравнительный анализ способов дезинфекции водозаборных скважин и сооружений водоснабжения // Перспективы развития и организационно-экономические проблемы управления производством: материалы международной научно-технической конференции. В 2 томах. Т 1. / Белорусский национальный технический университет. – Минск: Право и экономика, 2015. С. 211–226.
    Romanovski V. I., Bessonova Iu. N. [Comparative analysis of disinfection methods for water wells and water supply facilities]. Proceedings of Development Prospects and Organizational and Economic Problems of Industrial Management International Scientific-Technical Conference. In 2 volumes. V. 1: Belorussian National Technical University. Minsk, Law and Economics, 2015, pp. 211–226. (In Russian).
  17. Mischopoulou M., Naidis P., Kalamaras S., Kotsopoulos T. A., Samaras P. Effect of ultrasonic and ozonation pretreatment on methane production potential of raw molasses wastewater. Renewable Energy, 2016, v. 96, pp. 1078–1085.
  18. Anandan S., Ponnusamy V. K., Ashokkumar M. A review on hybrid techniques for the degradation of organic pollutants in aqueous environment. Ultrasonics Sonochemistry, 2020, v. 67, 105130.
  19. Ziylan A., Ince N. H. Catalytic ozonation of ibuprofen with ultrasound and Fe-based catalysts. Catalysis Today, 2015, v. 240, pp. 2–8.
  20. Ziylan-Yavaş A., Ince N. H. Catalytic ozonation of paracetamol using commercial and Pt-supported nanocomposites of Al2O3: the impact of ultrasound. Ultrasonics Sonochemistry, 2018, v. 40, pp. 175–182.

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

souz ingenerov 02

Aquatherm 200x200 gif ru foreign