№9|2022

WASTEWATER TREATMENT

DOI 10.35776/VST.2022.09.07
UDC 628.16.081.32

Ahmed Sameh Abdelfattah Araby, Gogina Elena

Study of the competitive adsorption of a mixture of phenol and ammonia nitrogen on activated carbon

Summary

Phenol and ammonia nitrogen are considered typical pollutants present in industrial wastewater from various industries. Application of the response surface methodology (RSM) was used to develop a mathematical model for the simultaneous adsorption of phenol and ammonia nitrogen on activated carbon. The combined effect of pH, carbon doses, the initial concentration of phenol, and the initial concentration of ammonia nitrogen on the efficiency of adsorption was studied. Simulation using RSM gave a nontransformed quadratic model for phenol removal and a square root transformed linear model for ammonia nitrogen removal. The results of the study showed a positive effect of increasing the carbon dose on the adsorption of phenol, while an increase in the initial concentration of phenol had a negative effect on the efficiency of its adsorption. Almost complete removal of phenol was achieved within 90 minutes at pH4. In addition, the adsorption of ammonia nitrogen improved with increasing pH and carbon dose. The presence of ammonia nitrogen adversely affected the removal of phenol with pH increasing. However, the presence of phenol does not affect the adsorption of ammonia nitrogen.

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Liu X., Tu Y., Liu S., Liu K., Zhang L., Li G., Xu Z. Adsorption of ammonia nitrogen and phenol onto the lignite surface: An experimental and molecular dynamics simulation study. Journal of Hazardous Materials. 416 (2021) 125966. DOI: 10.1016/j.jhazmat.2021.125966.
  2. Singh T., Bhatiya A. K., Mishra P. K., Srivastava N. An effective approach for the degradation of phenolic waste: phenols and cresols, in: P. Singh, A. Kumar, A.B.T.-A. of E. P. Borthakur (Eds.). Abatement of Environmental Pollutants, Elsevier, 2020, pp. 203–243. DOI: https://doi.org/10.1016/B978-0-12-818095-2.00011-4.
  3. Bartolomé A., Rodríguez-Moro G., Fuentes J.-L., Lopes M., Frontela J., Lázaro J., Cuaresma M., Gómez-Ariza J.-L., García-Barrera T., Vílchez C. Biodegradation of a complex phenolic industrial stream by bacterial strains isolated from industrial wastewaters. Processes, 2021, 9 (11):1964. DOI: 10.3390/pr9111964.
  4. Mojiri A., Ohashi A., Ozaki N., Kindaichi T. Pollutants removal from synthetic wastewater by the combined electrochemical, adsorption and sequencing batch reactor (SBR). Ecotoxicology and Environmental Safety, 2018, 161, 137–144. DOI: https://doi.org/10.1016/j.ecoenv.2018.05.053.
  5. Wang W., Ren X., Yang K., Hu Z., Yuan S. Inhibition of ammonia on anaerobic digestion of synthetic coal gasification wastewater and recovery using struvite precipitation. Journal of Hazardous Materials, 340 (2017) 152–159. DOI: https://doi.org/10.1016/j.jhazmat.2017.07.002.
  6. Caicedo J. R., van der Steen N. P., Arce O., Gijzen H. J. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Research. 34 (2000) 3829–3835. DOI: https://doi.org/10.1016/S0043-1354(00)00128-7.
  7. Greminger D. C., Burns G. P., Lynn S., Hanson D. N., King C. J. Solvent Extraction of Phenols from Water. Industrial and Engineering Chemistry Process Design and Development. 21 (1982) 51–54. DOI: 10.1021/i200016a010.
  8. Raza W., Lee J., Raza N., Luo Y., Kim K. H., Yang J. Removal of phenolic compounds from industrial waste water based on membrane-based technologies. Journal of Industrial and Engineering Chemistry. 71 (2019) 1–18. DOI: 10.1016/j.jiec.2018.11.024.
  9. Nickheslat A., Amin M. M., Izanloo H., Fatehizadeh A., Mousavi S. M. Phenol photocatalytic degradation by advanced oxidation process under ultraviolet radiation using titanium dioxide. Journal of Environmental and Public Health. 2013 (2013) 1–9. DOI: 10.1155/2013/815310.
  10. Andriantsiferana C., Julcour-Lebigue C., Creanga-Manole C., Delmas H., Wilhelm A.-M. Competitive Adsorption of p-Hydroxybenzoic Acid and phenol on activated carbon: experimental study and modeling. Journal of Environmental Engineering. 139 (2013) 402–409. DOI: 10.1061/(asce)ee.1943-7870.0000600.
  11. Zheng M., Han Y., Xu C., Zhang Z., Han H. Selective adsorption and bioavailability relevance of the cyclic organics in anaerobic pretreated coal pyrolysis wastewater by lignite activated coke. Science of The Total Environment. 653 (2019) 64–73. doi: https://doi.org/10.1016/j.scitotenv.2018.10.331.
  12. Hsu D., Lu C., Pang T., Wang Y., Wang G. Adsorption of ammonium nitrogen from aqueous solution on chemically activated biochar prepared from sorghum distillers grain. Applied Sciences (Switzerland). 9 (2019) 2–16. DOI: 10.3390/app9235249.
  13. Erdem M., Orhan R., Şahin M., Aydın E. Preparation and characterization of a novel activated carbon from vine shoots by ZnCl2 activation and investigation of its rifampicine removal capability. Water, Air and Soil Pollution. 227 (2016). DOI: 10.1007/s11270-016-2929-5.
  14. Du W., Sun J., Zan Y., Zhang Z., Ji J., Dou M., Wang F. Biomass-derived nitrogen-doped hierarchically porous carbon networks as efficient absorbents for phenol removal from wastewater over a wide pH range. RSC Advances. 7 (2017) 46629–46635. DOI: 10.1039/c7ra08374b.
  15. Ахмед С. А. А., Гогина Е. С. Адсорбция фенола на промышленном активированном угле: оценка эффективности // Водоснабжение и санитарная техника. 2021. № 6. С. 49–54. DOI: 10.35776/VST.2021.06.05.
    Ahmed S. A. A., Gogina E. S. [Phenol adsorption on industrial activated carbon: evaluation of efficiency]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2021, no. 6, pp. 49–54. DOI: 10.35776/VST.2021.06.05. (In Russian).
  16. Mojoudi N., Mirghaffari N., Soleimani M., Shariatmadari H., Belver C., Bedia J. Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies. Scientific Reports. 9 (2019) 1–12. DOI: 10.1038/s41598-019-55794-4.
  17. Franco D. S. P., Georgin J., Netto M. S., Allasia D., Oliveira M. L. S., Foletto E. L., Dotto G. L. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species. Journal of Environmental Chemical Engineering. 9 (2021) 105927. DOI: https://doi.org/10.1016/j.jece.2021.105927.
  18. Zhu Y., Kolar P., Shah S. B., Cheng J. J., Lim P. K. Simultaneous mitigation of p-cresol and ammonium using activated carbon from avocado seed. Environmental Technology & Innovation. 9 (2018) 63–73. DOI: https://doi.org/10.1016/j.eti.2017.10.006.
  19. Dargahi A., Samarghandi M. R., Shabanloo A., Mahmoudi M. M., Nasab H. Z. Statistical modeling of phenolic compounds adsorption onto low-cost adsorbent prepared from aloe vera leaves wastes using CCD-RSM optimization: effect of parameters, isotherm, and kinetic studies. Biomass Conversion and Biorefinery. (2021). DOI: 10.1007/s13399-021-01601-y.
  20. Anderson P. J. W., Mark J. RSM simplified: Optimizing processes using response surface methods for design of experiments, 2nd ed., Taylor & Francis Group, 2016.
  21. Moradi M., Fazlzadehdavil M., Pirsaheb M., Mansouri Y., Khosravi T., Sharafi K. Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent. Archives of Environmental Protection. 42 (2016) 33–43. DOI: 10.1515/aep-2016-0018.
  22. Baird R., Rice E., Eaton A. Standard methods for the examination of water and wastewaters, 23rd ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA, 2017.
  23. Jeong H., Park J., Kim H. Determination of NH+ in environmental water with interfering substances using the modified nessler method. Journal of Chemistry. 2013 (2013). DOI: 10.1155/2013/359217.
  24. Ahmed S. A. A., Vohra M. S. Treatment of aqueous selenocyanate (SeCN–) using combined TiO2 photocatalysis and 2-line ferrihydrite adsorption. Desalination and Water Treatment, 2021, v. 211, pp. 267–279. DOI: 10.5004/dwt.2021.26589.

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

мнтк баннер

souz ingenerov 02

Aquatherm 200x200 gif ru foreign