UDC 661.183.12
DOI 10.35776/VST.2023.08.03

Pavelkova Anna, Spitsov D. V.

Current state of the ion exchange resin market (a review)


Widespread use of ion exchange plants for both natural water and industrial wastewater treatment is driven by the use of various ion exchange resins. It provides for selecting a unit for both complete desalination of water and selective purification depending on the demands of work. The main fields of ion exchange application are considered. The specific features of ionite selection are analyzed depending on the type of filter regeneration, filtration mode and rate. The lack of a unified classification of ion exchange resins hampers their optimal choice since the very name gives no idea of their properties, which requires careful study of the characteristics. A comprehensive analysis of the current ionite market according to the classical classification, their interchangeability, possible import phaseout has been executed. The optimal choice of an ion exchange resin with the minimum cost of the treated water is made after a comprehensive analysis of the quality indicators of the treated and source water, filtration mode, type of the plant.

Key words

, , , , , , ,

For citation: Pavelkova A. M., Spitsov D. V. Current state of the ion exchange resin market (a review). Vodosnabzhenie i Sanitarnaia Tekhnika, 2023, no. 8, pp. 23–29. DOI: 10.35776/VST.2023.08.03. (In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe


  1. Shaposhnik V. A., Eliseeva T. V. [Milestones in the history of science (on the occasion of the 170th anniversary of ion exchange discovery and the 130th anniversary of electrodialysis)]. Sorbtsionnye i Khromatograficheskie Protsessy, 2020, v. 20, no. 18, pp. ­305–314. DOI: 10.17308/sorpchrom.2020.20/2786. (In Russian).
  2. Ivanov V. A., Gorshkov V. I. [70 years of ion exchange resin production history]. Sorbtsionnye i Khromatograficheskie Protsessy, 2006, v. 6, no. 1, pp. 5–31. (In Russian).
  3. Lifshits O. V. Spravochnik po vodopodgotovke kotel’nykh ustanovok [Handbook on preparing water for boiler plants. Moscow, Energiia Publ., 1976, 288 p.].
  4. Maslennikov V. V. [Pat. 2637331, RF. MPC C02F 1/42. Method and equipment for removing strontium from water. Izobreteniia. Poleznye Modeli, 2017, no. 34].
  5. Lin Maung Maung, Shitova V. O., Kagramanov G. G. [Removing heavy metals from water by ion exchange method]. Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2016, v. 30, no. 2 (171), pp. 109–110. (In Russian).
  6. Larin B. M., Iurchevskii E. B. [Problems while introducing ion-exchange and membrane water treatment technologies in power engineering]. Teploenergetika, 2019, no. 10, pp. 744–749. DOI: 10.1134/S0040363619100035. (In Russian).
  7. Kozhinov V. F. Ochistka pit’evoi i tekhnicheskoi vody. Primery i raschety: Uchebnoe posobie dlia vuzov [Purification of drinking and technical water. Examples and calculations: Textbook for universities. Moscow, BASTET Publ., 2008, 304 p.].
  8. Krivchenkova E. A., Panfilova L. A., Chernova I. A. [Analysis of the range and quality of cation exchangers presented on the Russian market and intended for use in water treatment units of CHP plants]. Teploenergetika, 2021, v. 68, no. 10, pp. 785–793. (In Russian).
  9. Analiz rynka ionoobmennykh smol v Rossii – 2023. Pokazateli i prognozy [Market analysis of ion exchange resins in Russia – 2023. Indicators and forecasts. Moscow, TEBIZGROUP Publ., 2023, 149 p.].
  10. Larin B. M., Bushuev E. N., Larin A. B., Karpychev E. A., Zhadan A. V. [Improvement of water treatment at CHP plants]. Teploenergetika, 2015, v. 62, no. 4, pp. 286–292. DOI: 10.1134/S0040363615020058. (In Russian).
  11. Zhadan A. V., Bushuev E. N. [Practical implementation of countercurrent ion exchange technology]. Vestnik ISPU, 2015, no. 4, pp. 10–15; Teploenergetika, 2015, no. 4, pp. 10–15 (In Russian).
  12. Gromov S. L., Panteleev A. A. [Countercurrent ionite regeneration technologies for water treatment. Part 1]. Teploenergetika, 2006, v. 53, no. 8, pp. 620–625. (In Russian).
  13. Gromov S. L., Panteleev A. A. [Countercurrent ionite regeneration technologies for water treatment. Part 2]. Teploenergetika, 2006, v. 53, no. 11, pp. 913–919. (In Russian).
  14. Vikhrev V. F., Shkrob M. S. Vodopodgotovka: Uchebnik dlia vuzov [Water treatment. Textbook for higher education. Moscow, Energiia Publ., 1972, 416 p.].
  15. Iurchevskii E. B., Komarova I. V., Galkina N. K., Iakovlev A. V., Anfilov B. G., Kiseleva S. A. [Predicting the performance of countercurrent ion exchangers using mathematical modeling]. Teploenergetika, 2003, v. 50, no. 17, pp. 554–559. (In Russian).
  16. Veselovskaya E. V., Lukonina O. V., Shyshlo А. G. [Current issues of upgrading water treatment systems for thermal power plants]. Izvestiia Vysshikh Uchebnykh Zavedenii. Severo-Kavkazskii Region. Tekhnicheskie Nauki, 2012, no. 2, pp. 63–66. (In Russian).
  17. Gromov S. L. [Advantages of monodispersed ion-exchange resins]. Teploenergetika, 1998, v. 45, no. 2, pp. 126–128. (In Russian).
  18. Korzina Y. E., Riabchikov B. E., Larionov S. Y. [Combined use of weak-acid and strong-acid cationites as an effective method for reducing consumption of chemicals and waste amount]. Voprosy Radiatsionnoi Bezopasnosti, 2009, no. 4 (56), pp. 3–12. (In Russian).
  19. Chugunov A. S. [Method of comparative evaluation of acidic and selective properties of weak-acid caion resins]. Izvestiia Sankt-Peterburgskogo Gosudarstvennogo Tekhnolocheskogo Instituta, 2014, no. 26 (52), pp. 20–25. (In Russian).
  20. Zykova I. V., Isakov V. A. [Comparison of ion exchange efficiency of removing silicic acid anions in the process of primary water purification on strongly basic anionites AB 17-8 and Lewatit M500]. Naukosfera, 2023, no. 2–2, pp. 188–190. (In Russian).
  21. Ignarina L. M., Molgacheva I. V., Anan’eva A. I. [Study of silicon capacity of strong-base anion exhangers]. Energetika Tatarstana, 2010, no. 4 (20), pp. 40–45. (In Russian).
  22. Rychkov V. N., Smirnov A. L., Gortsunova K. R. [Sorption of uranium from underground leaching solutions by strongly basic anion exchangers]. Radiokhimiia, 2014, v. 56, no. 1, pp. 38–42. (In Russian).
  23. Kopylov A. S. Vodopodgorovka v energetike: Uchebnoe posobie dlia vuzov [Water treatment in power industry. Textbook for higher education. Moscow, MEI Publ., 2016, 311 p.].
  24. Zykova I. V. [Comparison of efficiency of primary water desalination on weakly basic Dowex Marathon A2 and Lewatit Monoplus MP68 anionites]. Naukosfera, 2023, no. 2–2, pp. 185–187. (In Russian).
  25. Sagdiev V. N., Cheremisina O. V., Ponomareva M. A., Zatula E. S. [Process of gallium extracting from process solutions using ion exchange resins]. Metallurg, 2019, no. 2, pp. 74–79. (In Russian).
  26. Vinnitskii V. A., Chugunov A. S., Nechaev A. F. [Prospects for using weakly dissociated ion exchange resins in special water treatment systems at VVER-based nuclear power plants for reducing the amount of radioactive waste generated]. Teploenergetika, 2018, v. 65, no. 4, pp. 212–216. (In Russian).
  27. Krivchenkova E. A., Panfilova L. A., Chernova I. A. [Study of possible import phaseout of ion exchangers used at the water treatment systems of CHP plants]. Energetik, 2021, no. 1, pp. 38–43. (In Russian).

Banner Oct 2024

myproject msk ru

Баннер конференции г. Пятигорск

souz ingenerov 02

Aquatherm 200x200 gif ru foreign

ata 200x100ru